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Constrained Supervised Learning (CL)

» In constrained learning, losses appear as objectives as well as statistical

P = to(®;) = minimum fo(®y) = E[fo(d)g(x), )] Minimize objective loss
]

subject to ¢; (CDO) = E[ﬁ;(ﬁbo(x), )] < ¢ Statistical loss requirements

» Find the parametric function ®; that minimizes the statistical objective loss ¢y while incurring ...

. at most ¢; units of statistical constraint loss ¢; as well as ...

Chamon-Ribeiro, Probably Approximately Correct Constrained Learning, Neurips 2020,

Chamon-Paternain-Calvo Fullana-Ribeiro, Constrained Learning with Non-Convex Losses, TIT 2022

A. Ribeiro Learning with Constraints


https://arxiv.org/abs/2006.05487
https://arxiv.org/abs/2103.05134

Constrained Supervised Learning (CL)

» In constrained learning, losses appear as objectives as well as statistical and pointwise constraints

P = lo(®;) = minimum fo(®y) = E[fo(d)g(x), )] Minimize objective loss
]

subject to £; (Py ) = EV/(‘DO(XL )]

IN

ci Statistical loss requirements

(®g(x),y) < ¢ ae. Pointwise loss requirements

» Find the parametric function ®j; that minimizes the statistical objective loss ¢y while incurring ...
. at most ¢; units of statistical constraint loss ¢; as well as ...

. at most ¢; units of constraint loss £/ almost everywhere over the data distribution

Chamon-Ribeiro, Probably Approximately Correct Constrained Learning, Neurips 2020,

Chamon-Paternain-Calvo Fullana-Ribeiro, Constrained Learning with Non-Convex Losses, TIT 2022
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Constrained Supervised Learning (CL)

» In constrained learning, losses appear as objectives as well as statistical and pointwise constraints

P = (o(0)) = minimunm lo(®p) = E[fo(d)g(x), )] Minimize objective loss
subject to ¢; (CDO) = E[ﬁ (¢0(X), )} < c Statistical loss requirements

E'(¢9(x), ) < ¢ a.e. Pointwise loss requirements

» Find the parametric function ®j; that minimizes the statistical objective loss ¢y while incurring ...
. at most ¢ units of statistical constraint loss ¢ as well as ...

. at most ¢ units of constraint loss ¢ almost everywhere over the data distribution

Chamon-Ribeiro, Probably Approximately Correct Constrained Learning, Neurips 2020,

Chamon-Paternain-Calvo Fullana-Ribeiro, Constrained Learning with Non-Convex Losses, TIT 2022
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Constrained Reinforcement Learning (CRL)

» In constrained reinforcement learning, rewards appear as objectives and constraints

oo
P = W(r") = maximum Vo(7w) = Esaun Z'ytro(st,at) Maximize objective reward
T
t=0
o0
subject to  Vj(7w) = Esaon Z'ytr;(st,at) > ¢; Subject to reward requirements

...
Il
o

» Find the Policy 7 that maximizes the accumulation of objective reward ry while accumulating ...

. at least ¢; units of constraint reward r;

Paternain-Chamon-Calvo Fullana-Ribeiro, Constrained Reinforcement Learning has Zero Duality Gap, 2019

Calvo Fullana-Paternain-Chamon-Ribeiro, State Augmented Constrained Reinforcement Learning, 2021,
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Constrained Reinforcement Learning (CRL)

» In constrained reinforcement learning, rewards appear as objectives and constraints

o0
P = W(r") = maximum Vp(7w) = Esaun Z'ytro(st,at) Maximize objective reward
T
t=0
o0
subject to V(7) = Esaiun Z'ytr (st,at) | > ¢ Subject to reward requirements

..,
Il
<)

» Find the Policy 7 that maximizes the accumulation of objective reward ry while accumulating ...
. at least ¢ units of constraint reward r
Paternain-Chamon-Calvo Fullana-Ribeiro, Constrained Reinforcement Learning has Zero Duality Gap, 2019
Calvo Fullana-Paternain-Chamon-Ribeiro, State Augmented Constrained Reinforcement Learning, 2021,
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Artificial Intelligence under Requirements
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We all operate under constraints, so should Artificial Intelligence (Al) Systems

Motivation 1

We often choose to ignore Al's glaring limitations. We not only want to fit data as best as possible.

We also want to be Safe, Robust, Fair, Representative, Truthful...

> Alignment of generative Large Language Models (LLMs) to user preferences

Zhang-Li-Hounie-Bastani-Ding-Ribeiro, Alignment of Large Language Models with Constrained Learning, Neurips 2025,
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https://arxiv.org/abs/2505.19387

Constrained Alignment of Large Language Models (LLMs)

» Alignment of a language model requires adapting a pre trained LLM to satisfy user requirements

P = minigﬁze Ex {Eyww [DKL(M(- [ x) || 7rves(- | x))} } Maximize KL-regularized reward

subject to [Ey {Eymw(, [g,-(x.,y)} —Ey {g,-(x,y)} } > ¢ Subject to utility requirements

» Policy 7y that minimizes the KL-divergence to (pretrained) reference model s while attaining ...

. an improvement of at least ¢; units in user-specified utilities gj relative to 7ryef
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LLM Policies Trained with Constrained Alignment Outperform Heuristics
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» Pareto front of optimality vs helpfulness moves right and up relative to state of the art heuristics
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We all operate under constraints, so should Artificial Intelligence (Al) Systems

Motivation 2

Some Al problems that a priori do not look like constrained learning problems are often easier to

formulate using constraints.

» Composition of a set of distributions parameterized by different generative diffusion models

Khalafi-Hounie-Ding-Ribeiro, Composition and Alignment of Diffusion Models using Constrained Learning, Neurips 2025
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https://arxiv.org/abs/2508.19104

Diffusion Models

» The backward process is trained to remove noise from from a forward diffusion (noising) process

p(x1|x0) p(xe|xe—1) P(Xet1]xt) p(x7|xT-1)
/—\ /\
~_ ~_
p(xolx1) p(xe—1[x) P(Xe[X¢11) p(xr—1lx7)

p(xo) p(xu)

» Train denoiser ep(x:, t) to imitate the data distribution g(xo) with the learned distribution p(xo; €g)

A. Ribeiro Learning with Constraints 9



Composition of Generative Diffusion Models

» We want to sample from a composition of a set of diffusion models pretrained with different criteria

= E.g., models that optimize for different measures of human preferences

P = minimize u Minimize allowed divergence threshold
€g,U

subject to Dk [p(xo; €o) || q,} < u Keep divergences below threshold

» Find the denoiser ¢y that leads to a distribution p(xo; €9) with the smallest upper bound v ...

. on the KL divergence to all of the pretrained models g;

A. Ribeiro Learning with Constraints 10



Composition of Generative Diffusion Models

» Compose pretrained diffusion models optimized to four different measures of human preference
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» KL divergence constraints yield samples with good scores on all four measurements

= Unconstrained composition overemphasizes some distributions. Likely because of overlap
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Constrained Alignment of Generative Diffusion Models

» Constrained composition sampling stays close to pre-trained while balancing different rewards
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» Unconstrained composition deviates too much from pretrained model and overfits to some rewards
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We all operate under constraints, so should Artificial Intelligence (Al) Systems

Motivation 3A

Al has transformative potential in physical systems but we must remember that physical systems

are designed to satisfy requirements first and to be optimal second.

» Radio resource management in wireless communication and networking

Eisen-Ribeiro, Optimal Wireless Resource Allocation with Random Edg

Graph Neural Networks,

Uslu-NaderiAlizadeh-Eisen-Ribeiro, Fast State-Augmented Learning for Wireless Resource Allocation with Dual Variable Regression

Uslu-Hadou-Bidokhti-Ribeiro, Generative Diffusion Models for Resource Allocation in Wireles

A. Ribeiro

ss Networks,

Learning with Constraints
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Resource Allocation in Wireless Communication Networks

> Allocate powers p; in a wireless communication channel across channel state realizations hj;

hii pit

Communication rate determined by SINR = SINR;y = — —————
L+ 2 enq) hipit

P = maximum Network-wide Sum Rate Utility
pi~m

subject to Individual Min. Rate QoS

Individual Max. Power Budget
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Resource Allocation in Wireless Communication Networks

> Allocate powers p; in a wireless communication channel across channel state realizations hj;

hiipit

Communication rate determined by SINR = SINRjy = ———————
L+ 2 jen hipit

P = magfiTEm Eh, piy o Vtzr(SINth)]
j

subject to Ep, 5 ~x ’ytr(SINRjt)] > rmin, forall j,

Me 10 1M

Ehxpir"’ﬂ'

’ytpit:| < Pmax, forall i

r

~
Il

o
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Resource Allocation in Wireless Communication Networks with State Augmentation

» Optimal resource allocation policy is stochastic = Learn to sample from optimal distributions

= Augment state with Lagrange multipliers to sample realizations of optimal distribution
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Iteration (k) Time step (t)

P Less constraints are violated and violated constraints are violated by smaller amounts
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Resource Allocation in Wireless Communication Networks with Diffusion Processes

» Alternatively, train a generative diffusion model to solve the wireless resource allocation problem
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» Generate samples from a stationary (optimal) solution distribution in lieu of iterative sampling
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We all operate under constraints, so should Artificial Intelligence (Al) Systems

Motivation 3B

Al has transformative potential in physical systems but we must remember that physical systems

are designed to satisfy requirements first and to be optimal second.

> Approximating solutions of optimal power flow (OPF) on electrical power distribution grids

Damian Owerko, Anna Scaglionne and Alejandro Ribeiro, Learning Optimal Power Flow with Pointwise Constraints, Neurips 2025,

A. Ribeiro Learning with Constraints 17
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Optimal Power Flow

» Find voltages and power allocations that optimize a generation cost objective while satisfying ....

P

A. Ribeiro

. the conservation of power flow and operational constraints on buses and branches

minimize
s,V

subject to

with

Generation cost

Power flow conservation,

Power and voltage operating ranges on nodes,

Power and reactive power operating ranges on transmission lines,

Power Flow Equation.

Learning with Constraints 18



Optimal Power Flow

» Find voltages and power allocations that optimize a generation cost objective while satisfying ....

. the conservation of power flow and operational constraints on buses and branches

N
= minimize 2
P v E coi + c1iRe(s;) + oRe“(s))
i=1
i S 2
subject to 5 — = E i — vy |vil?,
16"(')
/mln <si < S/ max  Vi,min < lvi| < Vi max;
*
‘ | < flj,maxv ‘6I| S fji,maX7 eij.min S 4(Vivj ) S elj,maxv
; ’ Vi ViV 2 Vi Y
with fi = <7\/U + yj; ) - Y fi ( yij + Yji ) vj Yij :
t,/ tu / tU

A. Ribeiro Learning with Constraints 18



Optimal Power Flow

» Find voltages and power allocations that optimize a generation cost objective while satisfying ....

... the conservation of power flow and operational constraints on buses and branches

P = minimize C(s)
s,v
subjectto  h(s,v;r, ) = 0

g(s,vir, ) <0,

A. Ribeiro Learning with Constraints 18



Optimal Power Flow

» Find voltages and power allocations that optimize a generation cost objective while satisfying ....

... the conservation of power flow and operational constraints on buses and branches

P = minimize C(s)

s,v
subjectto  h(s,v;r, ) = 0
g(s,vir, ) <0,

» Equality constraints represent flow conservation. Inequality constraints represent physical constraints

= Constraint violations move buses and branches outside of their operating range

A. Ribeiro Learning with Constraints 18



Learning to Solve Optimal Power Flow with Pointwise Constraints

» For a distribution of power demand realizations r ~ p, train a parametric function ®(r; A) to...

. minimmize the expected cost while satisfying equality and inequality constraints

P = minimum E[c(qa(r;A))] P = minimum ?{ c(o(r A)”
subject to h<¢(r;A); r) =0 forallr subject to I‘{h(cb(r; A); r) } =0
g<d>(r;A);r> <0 forallr ﬁ[g(\cb(r;A);r)} <0

» An average objective is fine but constraints must be pointwise on individual demand realizations

A. Ribeiro Learning with Constraints 19
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-0.03 |-

Relative Subptimality
o
T
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» Training with pointwise constraints (red and blue) is the only method with workable constraints

Learning with Constraints




Challenges

16 - 21
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Constrained Reinforcement Learning (CRL)

» A CRL problem is exactly what the name says it is = Maximize a reward subject to other rewards

P = maximum Vo(7) = Esaur

nytro(st,at)]
t=0

subject to  Vj(mw) := Es,a~ﬂ|:27tr/(5taaf):| > G
t=0

» Policy 7 that maximizes accumulation of reward ry while accumulating at least ¢; units of reward r;

A. Ribeiro Learning with Constraints 22



Constrained Reinforcement Learning (CRL)

» A CRL problem is exactly what the name says it is = Maximize a reward subject to other rewards

P = maximum V(7)) := Es.or
s

Z’ytro(st,at)}
t=0

subject to V(7)) := Es,aww{zwtr (sf,at)} > c
=0

» Policy 7 that maximizes accumulation of reward rp while accumulating at least ¢ units of reward r

A. Ribeiro Learning with Constraints 22



Constrained Reinforcement Learning (CRL)

» CRL is challenging to solve because value functions Vo(7) and V() are not concave on the policy 7

st
2
T s
Vo(m) = 2 V(r) = 1
1+ 72 71+ 72

» Set aside this challenge for a moment and attempt to solve CRL in the Lagrangian dual domain

A. Ribeiro Learning with Constraints 23



The Lagrangian Dual of Constrained Reinforcement Learning

» The Lagrangian is a linear combination of objective and constraints weighted by multiplier A > 0

£(m,A) = Vo(m) + AT (V(r) €)= Eooun {va(m(st, ae) + Ae(st, >)] -
t=0
» The dual function is the maximum of the Lagrangian over the policy variable
g(A) = maximum L(7,A) = maximum Eg ;wr [Z'yt(ro(st, at) + A r(st, at))] -Ac

t=0

» The dual problem is the minimum of the dual function = D = g(\") = min}i\rgoum g(A)

A. Ribeiro Learning with Constraints 24



Dual Function and Dual Problem

» Maximizing the Lagrangian is a standard unconstrained reinforcement learning (RL) problem

g(A) = maxi7rrnum Es oo [Z,yf<ro(st, ar) + )\Tr(st7 at)> :| ¢

t=0

in(fA(Shat))] -A'c

t=0

= maximum E .
™

> A good reason for using the dual optimum D = g(\™) as a proxy in lieu of the primal CRL problem

» In general nonconvex problems, dual maxima are strict upper bounds of primal maxima = P < D

A. Ribeiro Learning with Constraints pL



Why Can we Solve Constrained Reinforcement Learning in the Dual Domain?

Strong Duality of Constrained Reinforcement Learning in Policy Space

If a strictly feasible policy exists, P = D even though value functions V;(7) are not concave on 7

Viep+(1-a) }—_\mﬁuu V(') such that V[ }—uw) (1—a)V()

Paternain-Chamon-Calvo Fullana-Ribeiro, Constrained Reinforcement Learning has Zero Duality Gap, 2019

A. Ribeiro Learning with Constraints 26
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How Can we Solve Constrained Reinforcement Learning in the Dual Domain?

State Augmented Constrained Reinforcement Learning

To solve CRL we augment the state with Lagrange multipliers and learn to maximize Lagrangians

Calvo Fullana-Paternain-Chamon-Ribeiro, State Augmented Constrained Reinforcement Learning, 2021,

A. Ribeiro Learning with Constraints 27
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How do we Handle Constraint Specification in Unknown Environments?

Resilient Constrained Reinforcement Learning

Adapt requirements (constraint levels ¢;) to equate the marginal costs and benefits of relaxations

Infeasible
Infeasible

=
7}
@
&2

Hounie-Ribeiro-Chamon, Resilient Constrained Learning, 2023,
Ding-Huan-Ribeiro, Resilient Constrained Reinforcement Learning, 2023
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Strong Duality of Constrained Reinforcement Learning

A. Ribeiro Learning with Constraints pL)



Strong Duality of Constrained Reinforcement Learning

Theorem (Paternain et al '19)

Assume that there exist a strictly feasible policy ! such that V(n) < c. Then, the constrained

reinforcement learning problem has zero duality gap = P =D

» There is some sort of hidden convexity in CRL problems = Occupancy measure reformulation

Paternain-Chamon-Calvo Fullana-Ribeiro, Constrained Reinforcement Learning has Zero Duality Gap, 2019
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https://arxiv.org/abs/1910.13393

Occupancy Measure Reformulation

» The occupancy measure of policy 7 is the accumulated probability of visiting each state action pair

-1
pr(s,a) =(1—7) Z’ytIP’,r (st =s,ac = a) = w(als) = px(s,a)x [/ pr(s,a) da]
A
» The value functions V;(7) can be rewritten as expectations with respect to the occupancy measure

Vi(p) = E(s,a)w[r;(s,a)] = /S><A r(s,a) px(s,a) dads

» Thus, value functions V;(p) are linear with respect to the occupancy measure variable

A. Ribeiro Learning with Constraints 31



A Non-Proof of Strong Duality

» CRL is a nonconvex program in policy variables but a linear program on occupancy measure variables

oo
P= maxi7r;num Vo(7) := Es ann [Zytro(st, at):| =P, = maxigﬁum Vo(p) == E(s,a~p |:r0(5[, at):|
t=0

oo
subject to V(7) = Es aur [Zytr (st, at)
t=0

>c subject to V(p) =E( 5)~, [r (st, at):| >c

» CRL formulated in terms of occupancy measure variables has no duality gap because it is an LP
P, = D, = minir)\num maximum  Vo(p) + )\T(V(p) — c)
P

» Primal equivalence # dual equivalency = CRL with policy variables may still have a duality gap

A. Ribeiro Learning with Constraints 32



A Proof Sketch of Strong Duality

y » Epigraph of policy CRL need not be convex
0

[1,27] C = {[Vo(ﬁ); V(W)] for some w}

A. Ribeiro Learning with Constraints B8
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A Proof Sketch of Strong Duality

» Epigraph of policy CRL need not be convex
Cc = {[Vo(ﬂ'); V(w)] for some w}

» Epigraph of occupancy measure CRL is convex

C, = {[Vo(p); V(p)} for some p}

A. Ribeiro Learning with Constraints Bs



A Proof Sketch of Strong Duality

y » Epigraph of policy CRL need not be convex
0

Cc = {[Vo(ﬂ'); V(w)] for some w}

» Epigraph of occupancy measure CRL is convex

C, = {[Vo(p); V(p)} for some p}

» These two sets are the same = C, =C

A. Ribeiro Learning with Constraints Bs
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Policy and Occupancy Measure Epigraphs are Convex in Different Ways

» The epigraphs C, and C of occupancy measure and policy CRL are convex in different ways

Vo Vo

\.pz \.‘ﬂ'z

C, VvV

There exist 7, such that

VI[er + 1= a)pz] = aVip) + (1~ @)V(p2) V[ra] = aV(m) + @ - a)V(m)

» The policy 74 is not a convex combination of 71 and 7 (which will become a headache soon)
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Learning Parameterization

» Strong duality, D = P, despite having value functions Vo(n) and V(7) that are not concave on 7

P =D = min}i\ng(l)Jm maxiTum Es oon Z,yf<ro(st,at)+)\Tr(st,at)> + e

t=0

» In practice, policies are functions of learning parameterizations = Choose actions as a ~ g

oo
- . . - .
Dy = minimum  maximum Es anmg E ~ (ro(st,at)—k)\ r(st,at)) + A'c
0 )
= =0

» Induces a duality gap because standard learning parameterizations are not convex
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Duality Gap in Parameterized Constrained Reinforcement Learning

» The learning parameterization is v-universal = mein max / ‘ m(als) — me(als) | da < v for all w
s
A

Theorem (Paternain et al '19)

The difference between the CRL parameterized dual Dy and the CRL primal P is bounded by

Bv
11—+~

‘Pfog‘g (1+|\>\*|\1)

» Duality gap depends on parameterization richness relative to discount factor and constraint difficulty
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Structural Properties of Constrained Reinforcement Learning Problems

» CRL problems are not convex when formulated in policy variables

Even though they are convex (linear) when formulated in occupancy measure variables

» Nevertheless, they have no duality gap = P = D. Because their epigraph sets are convex

» If we use v-universal learning parameterizations CRL problems have O(v) duality gaps

A. Ribeiro Learning with Constraints 37



Dual Gradient Descent (DGD)

28 - 35
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Dual Gradient Descent: Lagrangian Maximizers (Primal Iteration)

» Since the duality gap is O(v) (small) we can solve CRL in the parameterized dual domain

oo
.. . T T
De = mm)l\rgélm maximum  Eg ,r, |:§ :ryt(ro(styat)+A r(st,at)>:| + A'c

Uy
o t=0

» For given multiplier A, we find the parameter 87(\) that maximizes the corresponding Lagrangian

+ A'c

0'(A\) € argmax Esaung [Z'yt<ro(st,at) +>\Tr(st,at))
0

t=0

argmax L£(6, )
0

> Lagrangian maximizers 0(\) are unconstrained RL solutions = ra(s:, a;) = ro(s:, a:) + X ¢(s;, ar)

A. Ribeiro Learning with Constraints 39



Dual Gradient Descent: Multiplier Update (Dual Iteration)

» Constraint slacks evaluated at Lagrangian maximizers yield dual function gradients = Update A\ as

AT =

A— n(Es,aNﬂmw { ivtr(st, at)} - c)}

t=0

» A set of policy evaluations of unconstrained RL problems. One policy evaluation per constraint

» Since the dual function is convex (they always are), dual gradient descent approaches \*

A. Ribeiro Learning with Constraints 40



Dual

A. Ribeiro

Gradient Descent: Multiplier Update (Dual lteration)

» Constraint slacks evaluated at Lagrangian maximizers yield dual function gradients = Update A\ as

A = {A—n< [ivfr(st,at)} —c)}

t=0

» A set of policy evaluations of unconstrained RL problems. One policy evaluation per constraint
» Since the dual function is convex (they always are), dual gradient descent approaches A*

» Convergence of dual variables still holds if we consider stochastic approximations (policy rollouts)

Learning with Constraints
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Ergodic Convergence of (Stochastic) Dual Gradient Descent

Theorem (Calvo Fullana et al’23)

The sequence of Lagrangian maximizing policies 7(t) = 7' (\(t)) generated by dual

gradient descent are:

T-1
1
(i) Asymptotically feasible = 7 V(ﬂ'(t)) > c
=0
T-1 2
B
(i) Asymptotically near-optimal = E[% V(ﬂ'(t)):| > P - UT

A. Ribeiro Learning with Constraints 41
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https://arxiv.org/abs/2102.11941

Dual Gradient Descent Does not Converge to the Optimal Policy

A Tantalizing Conjecture (Time Immemorial)

The sequence of Lagrangian maximizing policies 7(t) = 7' (\(t)) generated by dual

gradient descent converge to the optimal policy:

(i) Asymptotically feasible = \Y)

A. Ribeiro Learning with Constraints 42
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Dual Gradient Descent Does not Converge to the Optimal Policy

A False Statement Because Value Functions are not Convex

A. Ribeiro Learning with Constraints 42
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The Epigraph of Constrained Reinforcement Learning

A. Ribeiro

» The epigraph C is convex in a strange way =- policy 7, is not a convex combination of 7 and 7’

-
1 1
» An average of value functions T ;Zl V[ﬂ(t)] is not the value function average V { 7 E w(t)}

Vo

t=1

—

There exist 7, such that V {ﬂ‘a] =aV(n)+(1—-a)V(x)

Learning with Constraints
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Dual Gradient Descent, Good News and Bad News

» Dual gradient descent alternates between Lagrangian maximization and dual gradient descent steps

» Lagrangian maximization is a standard (unconstrained) reinforcement learning problem

This is good news. It means that we know how to solve this maximization

» Dual gradient descent does not, alas (poor Yorick), converge to the optimal policy

= But it does converge in a sense = State Augmented Constrained Reinforcement Learning

Segarra-Eisen-Egan-Ribeiro, Attributing the Authorship of the Henry VI Plays by Word Adjacency, Shakespeare Quarterly 67(2) pp, 232-256, 2016
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State Augmented Constrained Reinforcement Learning

35 - 44
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Ergodic Constrained Reinforcement Learning

» Policy 7 that maximizes accumulation of reward ry while accumulating at least ¢; units of reward r;

-
1
P = maximum Vy(7) := lim ES,ENW[Z rg(st,at):|
™ T—oo T —o
1T
subject to  Vi(w) = Tlinw E“N”[TZ r,-(st,at)] > ¢
t=0

» Same formulation but without discounting and with ergodic averages (limits of time averages)
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Ergodic Constrained Reinforcement Learning

» Policy 7 that maximizes accumulation of reward ry while accumulating at least ¢ units of reward r

.
. . 1
P = maximum Vo(m) = TIme ES’QNW[T ; ro(st,at)]
1
subject to V(w) := TI;mQQ Es ann [ T ; r (st,at)] >c

» Same formulation but without discounting and with ergodic averages (limits of time averages)
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Rollout Dual Gradient Descent

T
> Lagrangian = L(m,A) = Tlim Es ann [71_2 ro(st,at)—i—}\Tr(st,at)]
— 00
t=0

-
» Unparameterized policy optimization = 7'(\) € argmax |im E;.ur | — E ra(st, at)
T T—o0 T —o

(k+1)To—1
> Rollout dual descent = Ajr1 = | Ax — -- Z r(shat ~ 7TT(>\;<)) —-c
To t=kTo

Execute policy f(Ax) for Ty time steps. Accumulate reward violations on associated multipliers
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Ergodic Convergence of Rollout Dual Gradient Descent (DGD)

Theorem (Calvo Fullana et al’23)

Rollout dual gradient descent generates state-action sequences { (se,a: ~ 7' (Ax)) } that are:
t>0

T-1
, 1 :
(i) Almost surely feasible Tlgn T tZ r(st,at ~ T ()\k)) > c a.s.
T—1 .
(ii) Near-optimal Ilim E 1 ro(Sz,at NWT()\,()) > p*_ nB”
T—o00 T pare 2
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What Convergence of Dual Gradient Descent Claims

Theorem (Calvo Fullana et al’23)

T—

. . . 1 1
(i) Almost surely feasible Tllmoo 7; r(st,at N7T1(>\k)) > c a.s.

-

(ii) Near-optimal lim E
T—oo t:

T-1 2
L o ian)] 2

» The time average of the rewards of the sequence generated by rollout dual descent converges

This sequence is a “solution” of the CRL problem.
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What Convergence of Dual Gradient Descent Does Not Claim

Theorem (Calvo Fullana et al’23)

T—1
. : . 1
(i) Almost surely feasible Tllmoo 7 tZ r(st,at ~ WT(Ak)) > c a.s.
T—1 2
) Nesrosiael i B - ro(st,atNWT(Ak)) L
T—oo T — 2

> Alas (poor Yorick), we do not have a claim on the optimal policy = 7'(Ax) /o7
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What Convergence of Dual Gradient Descent Does Not Claim

Theorem (Calvo Fullana et al’23)

T—

: 1 )
(i) Almost surely feasible Tlin 72 r(st,at ~ T ()\k)) > c a.s.

-

~

[y

(i1) Near-optimal Ilim E
T—o0

?
K
» Alas (poor Yorick), we do not have a claim on the optimal policy = e ZW‘L()\;() St
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What Convergence of Dual Gradient Descent Does Claim

Theorem (Calvo Fullana et al’23)

T-1
1
(i) Almost surely feasible lim = r(st7 ar ~ 7TT(>\;<)) > c a.s
Tooo T =0

T-1 a
1 . e

(ii) Near-optimal lim E | = ro(sf, ar ~ W'(Ak)) > pr_ 12
T— oo T = 2

» The sequence { (st,ar ~ 7 (Ak)) } N samples actions from the optimal policy (it solves CRL)
>0

= We just need a way to train a parameterization that generates the sequence a; ~ 7' ()
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Learning to Maximize Lagrangians

Constrained reinforcement learning is solved by learning policies that maximize Lagrangians

-
. 1
(M) € S TImeES’aN" [tho rAk(st,at)]

A. Ribeiro Learning with Constraints 52



State Augmented Constrained Reinforcement Learning

1 T
st s, St, a argmax lim Es s~ — ro(st, a
@ p(st+1lst, at) *>@ gﬂ Fom s,a 1r|: T g o(st, t):l
1 T
subject to _lim Eg s~ - r (st,a > c
6 ) . s,anv T T tEZ:O ( t t)] =

» For a Markov decision process (MDP) we want to choose actions that solve a CRL problem
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State Augmented Constrained Reinforcement Learning

-
1
st s, St, a 7% = argmax lim Es s~ — ro(st, a
Plscsa st 1) @ gmax _lim Ee, W[Tg ot t)}
1 T
subject to _lim Eg s~ - r (st,a > c
) . s,anv T TZ:U (t t)] =
7 (st) > -

» Requires finding optimal policy 7" =- | do not know how to find it operating in policy space
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State Augmented Constrained Reinforcement Learning

-

.
T .
st P(st+1lst, ar) *>@ 7 (s, Ax) € argmax_ lim Bs o | — ; rx, (sts at)
(st Ak) —»

» Find Lagrangian maximizing policies 7' (Ax) = Solve unconstrained RL with rewards rx, (st, ar)
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State Augmented Constrained Reinforcement Learning

-

.
Sy P(st+1lst, ar) *>@ w1 (se, M) € argmax _lim Es o | — ; rx, (sts at)
(st Ak) —»

@

» Needs dual variable A as input.
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State Augmented Constrained Reinforcement Learning

y (HDTo—1
Sy p(st+1lst, at) Ap1 = {*k - > [V(Sr‘,ar)—c]}
0

t=kTg
a Sk "'k'#/—x,‘]“ mqfﬂ
(s, Ae) >

Ak = |FKT—0:(k+1) Ty 1J

Ny

Ak A1 = ooe

» Needs dual variable A as input. Also need to update A, to accumulate constraint violations
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State Augmented Constrained Reinforcement Learning

y HDTo—1
Sij p(st+1lst, at) g1 = {Xk - = > [r(sr«,ar)—c]}

To t=kTg
N Sk = {Snr 0:(k+1)To \W
wi(se, )

Ak = | KT —0:(k+1)Ty wJ

Ak P(Xkt1| Xk, sk ak)

» This is equivalent to defining an augmented MDP with (augmented) state 5, = (s, A¢)
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State Augmented Constrained Reinforcement Learning

y (FDTo—1
Ayt = {xk S [V(Sr«,at)—c]}

To t=kTg

j p(st+1lst, at)

O
eny ()
> el ©

Ak P(Xkt1| Xk, sk ak)

» This is equivalent to defining an augmented MDP with (augmented) state 5, = (s, A¢)

And an augmented transition probability kernel that included the dual variable updates
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Learning Parameterization

> In practice, policies are functions of learning parameterizations = Choose actions as a ~ 7g(s, A)

T
Z sh)\t,at)}

-
Ty € argmax _lim ExEs g E (st,at) | = argmax _lim EAE; g
T T—oo — T T—oo

» Since this is an state augmented MDP we also need to take expectation over a A distribution

Choosing this distribution presents the usual challenges of off-policy RL
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Parameterized State Augmented Constrained Reinforcement Learning

» Learn parameterized policy 7y that maximizes the Lagrangian averaged over the dual distribution

Execute policy 73 while keeping track of dual variable updates = Generate optimal trajectory

1
T

M-

r(st, >\t73t):|

7\';(5:, Ak) € ar%rrzax Tﬁnoo ]E>\[E5,3N7r¢ |:

t:

Il
o

sj p(st+1lst, at)
(k+1)To—1

n
Akt1 = | Ak — — Z [r(st,at)fc]

N

Ak P(Xk+1l Ak, sk ak)

A. Ribeiro Learning with Constraints 55


https://arxiv.org/abs/2102.11941

Time Average Convergence is Through Policy Switching (Wireless Network)

» Constraint slacks oscillate around zero = They spend enough time below zero (feasibility claim)

6 2.00
— vi-¢ — A 10 — m
5 Vo—c 1.75 — A ——
0.8
L 4 1.50
2 3
] 3125
3 g 50
2 -] 3
< = =
£ 2100 K
5 2 = 0.4
< 5 0.75
S a
1
0.50 0.2
o 0.25
0.0
-1 0.00
0 2 4 6 8 10 o 2 4 6 8 10 o 10 20 30 40 50
Iteration (k) Iteration (k) Timestep (t)

» The slack oscillation is driven by multiplier oscillation which in turn drives policy switching

The multipliers drive the policies () to switch at the right rate

Uslu-Doostnejad-Ribeiro-NaderiAlizadeh, Learning to Slice Wi-Fi Networks: A State-Augmented Primal-Dual Approach, 2024
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Irrecoverability of the Optimal Policy (Wireless Network)

» DGD learns to allocate different users at different points in time with the right amount of power

6 2.00
— Vi-¢ — 1o — m
5 |l— vo—@ 1.75 % —m
150 0.8
2 4 o
9 k73
2 2
w3 = i0,6
= ] £
s, g &
2 = 0.4
2 So0.75
[=]
S
1
0.50 0.2
o 0.25
0.0
-1 0.00
0 2 4 6 8 10 o 2 4 6 8 10 o 10 20 30 40 50
Iteration (k) Iteration (k) Timestep (t)

» At any given epoch the policies 7TT(>\[() are not optimal = Their combined action is “optimal”

Uslu-Doostnejad-Ribeiro-NaderiAlizadeh, Learning to Slice Wi-Fi Networks: A State-Augmented Primal-Dual Approach, 2024
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State Augmented Constrained RL

» To learn solutions of constrained reinforcement learning problems we learn to maximize Lagrangians

Maximizing Lagrangians is equivalent to solving unconstrained MDPs with modified rewards

Equivalent to augmenting the MDP's state with dual variables which we update online

» This is not settling for a lesser goal =- We are still solving the original CRL problem

Which we otherwise don’'t how how to solve except with regularizations that induce suboptimality

Ding-Wei-Zhang-Ribeiro, Last-Iterate Convergent Policy Gradient Primal-Dual Methods for Constrained MDPs, 2023,
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Resilient Constrained (Reinforcement) Learning

» Ecological resilience is the ability of an ecosystem to adapt function to withstand varying conditions

» Learning resilience is the ability to adapt specifications to accommodate varying data properties

44 - 49
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Specifying Requirements in Reinforcement Learning is Hard

» Specifications in learning are difficult =- Feasible specifications depend on unknown distributions

= Requirement specifications can be relaxed during system design. They are variables

Perturbation function

With constraint relaxation u, the perturbation function P(u) is the solution of the relaxed problem

P(u) = maximum Vy(7) = EsyaNW[Zytro(st,at)]

t=0
oo

subject to V(m) := Es,aNW[Z’y r (st,ar) :| > c+u
t=0

> Larger relaxations decrease objective loss (a benefit) but increase specification violation (a cost).
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Resilient Constrained Learning: Adapting Requirements

» To balance costs and benefits of relaxation we relax constraints in proportion to their difficulty

Resilient Equilibrium

For strictly convex function h(u) we say that relaxation u™ achieves the resilient equilibrium if

Vh(u*) € —0P(u").

» At the resilient equilibrium the marginal cost of relaxation equals the marginal benefit of relaxation

Hounie-Ribeiro-Chamon, Resilient Constrained Learning, 2023,

Ding-Huan-Ribeiro, Resilient Constrained Reinforcement Learning, 2023
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Resilient Constrained Learning: Adapting Requirements

Resilient Equilibrium
For strictly convex function h(u) we say that relaxation u™ achieves the resilient equilibrium if

Vh(u*) € —9P(u”).

Infeasible
Infeasible
Infeasible

Hounie-Ribeiro-Chamon, Resilient Constrained Learning
Ding-Huan-Ribeiro, Resilient Constrained Reinforcement Learning, 2023
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Resilient Equilibria and Dual Variables

» Subdifferentials of perturbation functions are the opposite of corresponding optimal multipliers

Resilient Equilibrium

For strictly convex function h(u) we say that relaxation u® achieves the resilient equilibrium if

Vh(u™) € A"(u") =

» Resilient constrained learning problems have smaller sample complexity. They generalize better.

= The optimal multiplier A*(u™) is smaller than the optimal multiplier A*(0)

Hounie-Ribeiro-Chamon, Resilient Constrained Learning, 2023
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Algorithmic Reformulation of Resilient Constrained Learning

Resilient Constrained Learning Program

A relaxation u* satisfies the resilient equilibrium if and only if it is a solution of the program

P(u*) = maxi;num Vo(m) = ES,aNW{Z’YtFo(Suat) + h(u)
=0
subject to V(7) = ES,QNW{ZWtI’ (st;ar)| > c+u
t=0

» The resilient equilibrium exist and is unique

» Learning resilient solutions is equivalent to a regularized constrained learning problem
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Heterogeneous (Class Imbalanced) Federated Learning

» Learn a common model with heterogeneous data

distributed among C clients

> Client i loss = R,-(fe)=1E[€(fe(X),Y)]

c
> Average loss = R(fy) = %Z Ri(fe)
-1

» We seek a model that is best across all clients but is also good (not bad) for

P* = min R(fe)

fo

subject to Ri(fo) — R(fo) < ¢

Hounie-Ribeiro-Chamon, Resilient Constrained Learning, 2023,

A. Ribeiro

Learning with Constraints

each individual

client
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Heterogeneous (Class Imbalanced) Federated Learning

» Learn a common model with heterogeneous data

distributed among C clients

» Client i loss = Ri(fg) = E[f(fe(x),y)]
_ 1
> Average loss = R(fg) = T Z Ri(fe)
i=1

» We seek a model that is best across all clients but is also good (not bad) for each individual client

P* = min R(fe)

fo

subject to Ri(fo) — R(fo) < ¢

» Minority Samples have few samples in the whole dataset but are significant in some clients

Hounie-Ribeiro-Chamon, Resilient Constrained Learning, 2023,
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Constraints that are More Difficult Experience Larger Relaxations

Resilient relaxation u™ as a function of the Resilient relaxation and resilient loss for steeper
percent of entries drawn from the minority class constraint relaxation cost h(u) = (a/2)||ul?

0.175 e~ x X
0.150 e |ulz [o3e
0.1254 ‘ o R<f9) x 035
X
0.1004
. l-0.34
0.0754
X
0.050 M [-0.33
X
0.025 °
. -0.32
0.000- * x ° .
o 5 1o 15 20 2 H i 1o 20 40 100 1000
Clients with more minority samples see larger As we increase « the resilient perturbation
relaxations as their constraints are more difficult decreases and the resilient cost increases

Hounie-Ribeiro-Chamon, Resilient Constrained Learning, TIT 2022
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Resilient Learning Problems are Easier to Solve and Generalize Better

Standard and resilient multipliers of different Standard and resilient constraint violation of
clients as a function of reference constraint level different clients in the training and test sets
1.0
7 ) 0.8
6 L 0.6
5] 0.4
4
. 0.24
34
o 0.0+
S I -
14 _:.:. e ‘.4’. o X —0.2
04 é — 2 e PO —0.44
0.0'02 0.'02 O!Z Tra:in Telst
Tighter reference constraints do not yield large Constraint violations of resilient solutions in the
multipliers. We pay in the form of larger relaxations test set are smaller. Closer to test set values

Hounie-Ribeiro-Chamon, Resilient Constrained Learning, 2023,
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Concluding Remarks

Learning Under Requirements

49 - 51
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Artificial Intelligence and Systems Engineering

» Learning can transform systems engineering practice by automating the engineering design cycle

Requirements I
Model Opera_tlonal l %
/ settings :

Data
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Learning Under Requirements

» But it can do so only if we incorporate requirements in the practice of machine learning

. Learning
Requirements

Data
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Constrained Supervised Learning (CL)

» In constrained learning, losses appear as objectives as well as statistical and pointwise constraints

P = to(®;) = minimum (o(®y) = E[to(@0(x), )] Minimize objective loss
0
subject to /; (%) = E[f;((bg(x), )] < ¢ Statistical loss requirements
i(®g(x),y) < ¢ ae. Pointwise loss requirements

» Find the parametric function ®; that minimizes the statistical objective loss £y while incurring ...
. at most ¢; units of statistical constraint loss ¢; as well as ...

. at most ¢; units of constraint loss £/ almost everywhere over the data distribution
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Constrained Reinforcement Learning (CRL)

» In constrained reinforcement learning, rewards appear as objectives and constraints

[]8

P = W(r*) = maximum Vo(w) = Es,a~ﬂ|: wtro(st,at)] Maximize objective reward

Il
<)

t:

o0
subject to  V;(m) = Es,awﬂ[z'y ri (st, at ] > ¢ Subject to reward requirements
t=0

» Find the Policy 7* that maximizes the accumulation of objective reward ry while accumulating ...

. at least ¢; units of constraint reward r;
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Concluding Remarks

Requirements can be Transformative in Practice

51 - 53
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Constrained Alignment of Large Language Models (LLMs)

3

12 e oo, oor Mut-ahot
006
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g 8 £ 75 001 \
= o . N
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(2] = 25
- = © °
& 8 oo o aa] onenor 007 Oneshot
= o 006
2 2 wn 25 DPO 0.04 005
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i oFO, 003
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o001 \ 001
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» Pareto front of optimality vs helpfulness moves right and up relative to state of the art heuristics
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Constrained Alignment of Generative Diffusion Models

» Constrained composition sampling stays close to pre-trained while balancing different rewards

Pre-trained Unconstrained Constrained
Unconstrained == Constrained
Unconstrained ~ —— aesthetic ~ —= mps
Constrained -=- hps «wee pickscore 030
5 )
° ° 0.25
B £ 020
2 o1s 7
o .
g 32 \
= S 010
o
£ <
5 0.05
z
- 0.00 »
25 50 75 100 125 150 25 5.0 75 10.0 125 15.0 -
Epoch Epoch

» Unconstrained composition deviates too much from pretrained model and overfits to some rewards
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Resource Allocation in Wireless Communication Networks with Diffusion Processes

» Optimal resource allocation policy is stochastic =- Learn to sample from optimal distributions

L 10 Jue 10 » 10 g
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P Less constraints are violated and violated constraints are violated by smaller amounts
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Optimal Power Flow

» Train a learning parameterization that optimizes cost objective while satisfying ....

... the conservation of power flow and operational constraints on buses and branches

-0.03 -

Relative Subptimality
(=)
T

-0.06

| | |
0.01 0.05 0.1 0.5 1

Mean Relative Constraint Violation

» Training with pointwise constraints (red and blue) is the only method with workable constraints
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Concluding Remarks

Requirements in Al Raise Interesting Fundamental Questions

53 - 55
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Strong Duality of Constrained Reinforcement Learning in Policy Space

Strong Duality of Constrained Reinforcement Learning in Policy Space

If a strictly feasible policy exists, P = D even though value functions V;(7) are not concave on 7

Vo Vo
pP1 s
— | —_ |
\.02 \‘m
Co v c v
V[ap +(1- (x)p'} =aV(p)+ (1 - a)V(p) There exist 7, such that VI:’/T,,} =aV(r)+ (1 —-a)V(r")

Paternain-Chamon-Calvo Fullana-Ribeiro, Constrained Reinforcement Learning has Zero Duality Gap, 2019
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State Augmented Constrained Reinforcement Learning

State Augmented Constrained Reinforcement Learning

To solve CRL we augment the state with Lagrange multipliers and learn to maximize Lagrangians

m
o

St p(se+1lst, at) 0.8

z
1 °
) — 04

\; 0.2
o

PN k1| Xk sk5 ak)
o 10 20 30 40 50

Timestep (t)
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Resilient Constrained Reinforcement Learning

Resilient Constrained Reinforcement Learning

Adapt requirements (constraint levels ¢;) to equate the marginal costs and benefits of relaxations

Infeasible
Infeasible
Infeasible

Hounie-Ribeiro-Chamon, Resilient Constrained Learning, 2023,

2023

A. Ribeiro Learning with Constraints
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Concluding Remarks

Systems Engineering and Artificial Intelligence

55 - 56
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Systems Engineering, Artificial Intelligence and Learning Under Requirements

A. Ribeiro

Claim 1.  Systems Engineering and Artificial Intelligence (Al) are closer disciplines than is often

recognized. We use more Al in systems engineering and more systems engineering in Al

Claim 2.  Ignoring requirements is poor systems engineering practice. = We can solve limita-

tions of Al and we can expand its reach if we incorporate requirements in Al

Claim 3. Constrained (reinfocement) learning problems are interesting mathematical objects.

They are not convex but have small duality gaps

Learning with Constraints
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