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Constrained Supervised Learning (CL)

▶ In constrained learning, losses appear as objectives as well as statistical and pointwise constraints

P = ℓ0
(
Φ∗

θ

)
= minimum

Φθ

ℓ0
(
Φθ

)
= E

[
ℓ0
(
Φθ(x), y

) ]
Minimize objective loss

subject to ℓi
(
Φθ

)
= E

[
ℓi
(
Φθ(x), y

) ]
≤ ci Statistical loss requirements

ℓ′i
(
Φθ(x), y

)
≤ ci a.e. Pointwise loss requirements

▶ Find the parametric function Φ∗
θ that minimizes the statistical objective loss ℓ0 while incurring ...

... at most ci units of statistical constraint loss ℓi as well as ...

... at most ci units of constraint loss ℓ
′
i almost everywhere over the data distribution

Chamon-Ribeiro, Probably Approximately Correct Constrained Learning, Neurips 2020, arxiv:2006.05487

Chamon-Paternain-Calvo Fullana-Ribeiro, Constrained Learning with Non-Convex Losses, TIT 2022, arxiv:2103.05134
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Constrained Supervised Learning (CL)

▶ In constrained learning, losses appear as objectives as well as statistical and pointwise constraints
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▶ Find the parametric function Φ∗
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... at most c units of statistical constraint loss ℓ as well as ...

... at most c units of constraint loss ℓ′ almost everywhere over the data distribution

Chamon-Ribeiro, Probably Approximately Correct Constrained Learning, Neurips 2020, arxiv:2006.05487

Chamon-Paternain-Calvo Fullana-Ribeiro, Constrained Learning with Non-Convex Losses, TIT 2022, arxiv:2103.05134

A. Ribeiro Learning with Constraints 2

https://arxiv.org/abs/2006.05487
https://arxiv.org/abs/2103.05134


Constrained Reinforcement Learning (CRL)

▶ In constrained reinforcement learning, rewards appear as objectives and constraints

P = V0(π
∗) = maximum

π
V0(π) := Es,a∼π

[ ∞∑
t=0

γt r0(st , at)

]
Maximize objective reward

subject to Vi (π) := Es,a∼π

[ ∞∑
t=0

γt ri (st , at)

]
≥ ci Subject to reward requirements

▶ Find the Policy π∗ that maximizes the accumulation of objective reward r0 while accumulating ...

... at least ci units of constraint reward ri

Paternain-Chamon-Calvo Fullana-Ribeiro, Constrained Reinforcement Learning has Zero Duality Gap, 2019, arxiv:1910.13393

Calvo Fullana-Paternain-Chamon-Ribeiro, State Augmented Constrained Reinforcement Learning, 2021, arxiv:2102.11941
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Artificial Intelligence under Requirements
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We all operate under constraints, so should Artificial Intelligence (AI) Systems

Motivation 1

We often choose to ignore AI’s glaring limitations. We not only want to fit data as best as possible.

We also want to be Safe, Robust, Fair, Representative, Truthful...

▶ Alignment of generative Large Language Models (LLMs) to user preferences

Zhang-Li-Hounie-Bastani-Ding-Ribeiro, Alignment of Large Language Models with Constrained Learning, Neurips 2025, arxiv:2505.19387
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Constrained Alignment of Large Language Models (LLMs)

▶ Alignment of a language model requires adapting a pre trained LLM to satisfy user requirements

P = minimize
θ

Ex

[
Ey∼πθ

[
DKL(πθ(· | x) ∥πref(· | x))

] ]
Maximize KL-regularized reward

subject to Ex

[
Ey∼πθ

[
gi (x, y)

]
− Ey∼πref

[
gi (x, y)

] ]
≥ ci Subject to utility requirements

▶ Policy πθ that minimizes the KL-divergence to (pretrained) reference model πref while attaining ...

... an improvement of at least ci units in user-specified utilities gi relative to πref
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LLM Policies Trained with Constrained Alignment Outperform Heuristics

▶ Align a pretrained LLM to enhance helpfulness and safety of text generated in response to prompts
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▶ Pareto front of optimality vs helpfulness moves right and up relative to state of the art heuristics
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We all operate under constraints, so should Artificial Intelligence (AI) Systems

Motivation 2

Some AI problems that a priori do not look like constrained learning problems are often easier to

formulate using constraints.

▶ Composition of a set of distributions parameterized by different generative diffusion models

Khalafi-Hounie-Ding-Ribeiro, Composition and Alignment of Diffusion Models using Constrained Learning, Neurips 2025, arxiv:2508.19104
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Diffusion Models

▶ The backward process is trained to remove noise from from a forward diffusion (noising) process

Di!usion Models

↭ The backward process is trained to remove noise from from a forward di!usion (noising) process

q(xt ) p(xt+1) · · · p(xT )p(xt→1)· · ·p(x0)

p(x1|x0) p(xt |xt→1) p(xt+1|xt) p(xT |xT→1)

p(xT→1|xT )p(xt |xt+1)p(xt→1|xt)p(x0|x1)

p(x0) p(xu) p(xt) p(xT )

↭ Train denoiser ωω(xt , t) to imitate the data distribution q(x0) with the learned distribution p(x0; ωω)

A. Ribeiro Constrained Learning 9

▶ Train denoiser ϵθ(xt , t) to imitate the data distribution q(x0) with the learned distribution p(x0; ϵθ)
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Composition of Generative Diffusion Models

▶ We want to sample from a composition of a set of diffusion models pretrained with different criteria

⇒ E.g., models that optimize for different measures of human preferences

P = minimize
ϵθ,u

u Minimize allowed divergence threshold

subject to DKL

[
p(x0; ϵθ) ∥ qi

]
≤ u Keep divergences below threshold

▶ Find the denoiser ϵθ that leads to a distribution p(x0; ϵθ) with the smallest upper bound u ...

... on the KL divergence to all of the pretrained models qi
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Composition of Generative Diffusion Models

▶ Compose pretrained diffusion models optimized to four different measures of human preference
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▶ KL divergence constraints yield samples with good scores on all four measurements

⇒ Unconstrained composition overemphasizes some distributions. Likely because of overlap

A. Ribeiro Learning with Constraints 11



Constrained Alignment of Generative Diffusion Models

▶ Constrained composition sampling stays close to pre-trained while balancing different rewards

▶ Unconstrained composition deviates too much from pretrained model and overfits to some rewards

A. Ribeiro Learning with Constraints 12



We all operate under constraints, so should Artificial Intelligence (AI) Systems

Motivation 3A

AI has transformative potential in physical systems but we must remember that physical systems

are designed to satisfy requirements first and to be optimal second.

▶ Radio resource management in wireless communication and networking

Eisen-Ribeiro, Optimal Wireless Resource Allocation with Random Edge Graph Neural Networks, arxiv:1909.01865

Uslu-NaderiAlizadeh-Eisen-Ribeiro, Fast State-Augmented Learning for Wireless Resource Allocation with Dual Variable Regression, arxiv:2506.18748

Uslu-Hadou-Bidokhti-Ribeiro, Generative Diffusion Models for Resource Allocation in Wireless Networks, arxiv:2504.20277
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Resource Allocation in Wireless Communication Networks

▶ Allocate powers pi in a wireless communication channel across channel state realizations hij

Communication rate determined by SINR ⇒ SINRit =
hiipit

1 +
∑

j∈n(i) hijpjt

P = maximum
pi∼π

Network-wide Sum Rate Utility

subject to Individual Min. Rate QoS

Individual Max. Power Budget
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Resource Allocation in Wireless Communication Networks

▶ Allocate powers pi in a wireless communication channel across channel state realizations hij

Communication rate determined by SINR ⇒ SINRit =
hiipit

1 +
∑

j∈n(i) hijpjt

P = maximum
pi∼π

Eh,pit∼π

[ ∞∑
t=0

γt
∑
j

r(SINRjt)

]

subject to Eh,pit∼π

[ ∞∑
t=0

γt r(SINRjt)

]
≥ rmin, for all j ,

Eh,pit∼π

[ ∞∑
t=0

γtpit

]
≤ pmax, for all i
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Resource Allocation in Wireless Communication Networks with State Augmentation

▶ Optimal resource allocation policy is stochastic ⇒ Learn to sample from optimal distributions

⇒ Augment state with Lagrange multipliers to sample realizations of optimal distribution
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▶ Less constraints are violated and violated constraints are violated by smaller amounts
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Resource Allocation in Wireless Communication Networks with Diffusion Processes

▶ Alternatively, train a generative diffusion model to solve the wireless resource allocation problem
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▶ Generate samples from a stationary (optimal) solution distribution in lieu of iterative sampling
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We all operate under constraints, so should Artificial Intelligence (AI) Systems

Motivation 3B

AI has transformative potential in physical systems but we must remember that physical systems

are designed to satisfy requirements first and to be optimal second.

▶ Approximating solutions of optimal power flow (OPF) on electrical power distribution grids

Damian Owerko, Anna Scaglionne and Alejandro Ribeiro, Learning Optimal Power Flow with Pointwise Constraints, Neurips 2025, arxiv:2510.20777
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Optimal Power Flow

▶ Find voltages and power allocations that optimize a generation cost objective while satisfying ....

... the conservation of power flow and operational constraints on buses and branches

P = minimize
s,v

Generation cost

subject to Power flow conservation,

Power and voltage operating ranges on nodes,

Power and reactive power operating ranges on transmission lines,

Power Flow Equation.with

A. Ribeiro Learning with Constraints 18



Optimal Power Flow

▶ Find voltages and power allocations that optimize a generation cost objective while satisfying ....

... the conservation of power flow and operational constraints on buses and branches

P = minimize
s,v

N∑
i=1

c0i + c1iRe(si ) + c2iRe
2(si )

subject to si − ri =
∑
j∈n(i)

fij − yS∗
i |vi |2,

sGi,min ≤ si ≤ sGi,max vi,min ≤ |vi | ≤ vi,max,

|fij | ≤ fij,max, |fji | ≤ fji,max, θij,min ≤ ∠(viv∗
j ) ≤ θij,max,

fij =
(
yij + yC

ij

)∗
∣∣∣∣ vitij

∣∣∣∣2 − y∗
ij

vi v
∗
j

tij
, fji =

(
yij + yC

ji

)∗
| vj |2 − y∗

ij

v∗
i vj

t∗ij
.with
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Optimal Power Flow

▶ Find voltages and power allocations that optimize a generation cost objective while satisfying ....

... the conservation of power flow and operational constraints on buses and branches

P = minimize
s,v

C(s)

subject to h( s, v ; r , ) = 0

g( s, v ; r , ) ≤ 0,
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Optimal Power Flow

▶ Find voltages and power allocations that optimize a generation cost objective while satisfying ....

... the conservation of power flow and operational constraints on buses and branches

P = minimize
s,v

C(s)

subject to h( s, v ; r , ) = 0

g( s, v ; r , ) ≤ 0,

▶ Equality constraints represent flow conservation. Inequality constraints represent physical constraints

⇒ Constraint violations move buses and branches outside of their operating range
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Learning to Solve Optimal Power Flow with Pointwise Constraints

▶ For a distribution of power demand realizations r ∼ ρ, train a parametric function Φ(r ;A) to...

... minimmize the expected cost while satisfying equality and inequality constraints

P = minimum
A

E
[
C
(
Φ(r ;A)

) ]
subject to h

(
Φ(r ;A); r

)
= 0 for all r

g
(
Φ(r ;A); r

)
≤ 0 for all r

P = minimum
A

E
[
C
(
Φ(r ;A)

) ]
subject to E

[
h
(
Φ(r ;A); r

) ]
= 0

E
[
g
(
Φ(r ;A); r

) ]
≤ 0

▶ An average objective is fine but constraints must be pointwise on individual demand realizations
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Pointwise Constraints Push the AI Parameterization to Satisfy Constraints

▶ Train graph attention to solve OPF in IEEE 300 ⇒ Test feasibility of individual demand realizations

C Project Description: Generative AI Agents for Resilient Wireless Comm. Systems
In ecology, resilience encompasses three properties of nature: Robustness, resistance, and latitude [1, 2].
Robustness is the ability of an ecosystem to tolerate disturbances without changing behavior. Resistance
is the ability to adapt behavior to maintain function. Latitude is the ability to adapt function to maintain
survivability. We adopt this triad here as a novel definition of resilience in wireless resource management.
We say that a resource allocation policy has high robustness if its allocations can maintain Quality of
Service (QoS) over a range of system states [cf. (1)]. We say that it has high resistance if it can maintain
QoS by adapting resource allocations to varying states [cf. (SPP)]. We say that it has high latitude if it
can adapt QoS requirements to avoid catastrophic failure [cf. (2)]. Robustness, resistance, and latitude are
layers of protection. A resilient policy tolerates small disturbances (robustness), adapts allocations to tolerate
midrange disturbances (resistance), and changes requirements to survive large disturbances (latitude).

The goal of this project is to develop resilient generative AI agents to allocate resources with high robustness,
resistance, and latitude. To achieve this goal, we argue for novel AI paradigms centered on satisfying
requirements rather than on minimizing losses. In everywhere learning, we propose to train AI agents to
satisfy constraints with probability one over data distributions [cf. (SPP) and (1)]. This is in contrast to the
standard approach of minimizing average losses. In requirement learning, we propose to train AI agents to
identify and relax requirements that are di!cult to satisfy. This is codified in an equilibrium condition in
which requirements are relaxed in proportion to their e"ect on overall system performance [cf. (2)].
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Fig. 1: Everywhere (SPP) & Requirement (2) Learning. Constraint viola-
tions of everywhere learning agents are smaller than constraint violations
of supervised (orange) or constrained (green) agents. Requirement learn-
ing improves optimality in corner cases by relaxing constraints (blue).

Everywhere learning is formulated to
enable robustness and resistance, since
in both cases we aim to satisfy require-
ments over varying states – through tol-
erance in robustness and through adap-
tation in resistance – and requirement
learning is formulated to enable high lat-
itude. In a preliminary test (Fig. 1), we
train AI agents with everywhere learn-
ing (red), supervised learning [3–20] (or-
ange) and constrained learning [21–27]
(green) to satisfy 300 constraints. Each
point in Fig. 1 represents outcomes of
di"erent state realizations with relative optimality gaps plotted against relative constraint violations. We
see that everywhere learning tradeo"s small optimality losses for much smaller constraint violations, and
that supervised and constrained learning have unworkable violations for robust or resistant policies. A test
of requirement learning (§ C.3) shows that it trains policies that reduce suboptimality at the cost of larger
constraint relaxations (blue). This tradeo" is most pronounced in corner cases with di!cult requirements.

To realize everywhere and requirement learning, we propose several technical innovations. Highlights of
the proposed research include an approximate duality theory to substantiate everywhere learning in the
dual domain, along with algorithms to contend with the high dimensionality of the dual function (§ C.2). We
also investigate dual variables as identifiers of di!cult constraints and propose their use for human operator
feedback and active learning of corner cases (§ C.3). Throughout, generative AI agents for everywhere and
requirement learning are developed as samplers of optimal stochastic control policies of di"usion processes
(§ C.4). We will demonstrate resilient AI agents in physical systems through collaborations with industry
partners and open testbeds (§ C.5). To impact resilience of NextG networks, we will engage industry partners
to translate resilient generative AI and incorporate research results into our educational missions (§ C.8).

C.1 Intellectual Merit: Resilient AI with High Robustness, Resistance & Latitude
Resistance. Explaining robustness, resistance, and latitude is easiest if we introduce their mathematical
formulations. It is also easier if we begin with resistance instead of robustness. Consider then a wireless
communication system with a state variable H that encapsulates both channel and node states. Given the
system’s state, an AI agent allocates resources ω(H; A) as dictated by a parametric function class. Resource

▶ Training with pointwise constraints (red and blue) is the only method with workable constraints
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Challenges

16 - 21
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Constrained Reinforcement Learning (CRL)

▶ A CRL problem is exactly what the name says it is ⇒ Maximize a reward subject to other rewards

P = maximum
π

V0(π) := Es,a∼π

[ ∞∑
t=0

γtr0(st , at)

]

subject to Vi (π) := Es,a∼π

[ ∞∑
t=0

γtri (st , at)

]
≥ ci

▶ Policy π that maximizes accumulation of reward r0 while accumulating at least ci units of reward ri
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Constrained Reinforcement Learning (CRL)

▶ A CRL problem is exactly what the name says it is ⇒ Maximize a reward subject to other rewards

P = maximum
π

V0(π) := Es,a∼π

[ ∞∑
t=0

γtr0(st , at)

]

subject to V(π) := Es,a∼π

[ ∞∑
t=0

γtr (st , at)

]
≥ c

▶ Policy π that maximizes accumulation of reward r0 while accumulating at least c units of reward r

A. Ribeiro Learning with Constraints 22



Constrained Reinforcement Learning (CRL)

▶ CRL is challenging to solve because value functions V0(π) and V(π) are not concave on the policy π

π1 π2

V0(π)

1 2

π1

π2

1 − π1 1 − π2

V0(π) =
π2

π1 + π2

V (π) =
π1

π1 + π2

π1 π2

V (π)

▶ Set aside this challenge for a moment and attempt to solve CRL in the Lagrangian dual domain
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The Lagrangian Dual of Constrained Reinforcement Learning

▶ The Lagrangian is a linear combination of objective and constraints weighted by multiplier λ ≥ 0

L(π,λ) = V0(π) + λT
(
V(π)− c

)
= Es,a∼π

[ ∞∑
t=0

γt

(
r0(st , at) + λT r(st , at)

)]
− λTc

▶ The dual function is the maximum of the Lagrangian over the policy variable

g(λ) = maximum
π

L(π,λ) = maximum
π

Es,a∼π

[ ∞∑
t=0

γt

(
r0(st , at) + λT r(st , at)

)]
−λTc

▶ The dual problem is the minimum of the dual function ⇒ D = g(λ∗) = minimum
λ≥0

g(λ)
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Dual Function and Dual Problem

▶ Maximizing the Lagrangian is a standard unconstrained reinforcement learning (RL) problem

g(λ) = maximum
π

Es,a∼π

[ ∞∑
t=0

γt

(
r0(st , at) + λT r(st , at)

)]
−λTc

:= maximum
π

Es,a∼π

[ ∞∑
t=0

γt

(
rλ(st , at)

)]
−λTc

▶ A good reason for using the dual optimum D = g(λ∗) as a proxy in lieu of the primal CRL problem

▶ In general nonconvex problems, dual maxima are strict upper bounds of primal maxima ⇒ P < D
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Why Can we Solve Constrained Reinforcement Learning in the Dual Domain?

Strong Duality of Constrained Reinforcement Learning in Policy Space

If a strictly feasible policy exists, P = D even though value functions Vi (π) are not concave on π

Policy and Occupancy Measure Epigraphs are Convex in Di↵erent Ways

I The epigraphs C⇢ and C of occupancy measure and policy CRL are convex in di↵erent ways

V

V0

C⇢

P⇢=D⇢

⇢1

⇢2

V
h
↵⇢ + (1 � ↵)⇢0

i
= ↵V (⇢) + (1 � ↵)V (⇢0)

V

V0

C

P=D

⇡1

⇡2

There exist ⇡↵ such that V
h
⇡↵

i
= ↵V (⇡) + (1�↵)V (⇡0)

I The policy ⇡↵ is not a convex combination of ⇡ and ⇡0 challenges convergence of dual methods
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Paternain-Chamon-Calvo Fullana-Ribeiro, Constrained Reinforcement Learning has Zero Duality Gap, 2019, arxiv:1910.13393
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How Can we Solve Constrained Reinforcement Learning in the Dual Domain?

State Augmented Constrained Reinforcement Learning

To solve CRL we augment the state with Lagrange multipliers and learn to maximize LagrangiansState Augmented Constrained Reinforcement Learning

st

⇡†(st , �k ) at

p(st+1|st , at ) st+1

�k p(�k+1|�k , sk , ak ) �k+1

�k+1 =

"
�k �

⌘

T0

(k+1)T0�1X

t=kT0


r(st , at ) � c

� #

+

sk =
h
skT�0:(k+1)T0�1

i

ak =
h
akT�0:(k+1)T0�1

i

I This is equivalent to defining an augmented MDP with (augmented) state s̃t = (st ,�t)

And an augmented transition probability kernel that included the dual variable updates
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Irrecoverability of the Optimal Policy (Wireless Network)

I DGD learns to allocate di↵erent users at di↵erent points in time with the right amount of power

I At any given epoch the policies ⇡†(�k) are not optimal ) Their combined action is “optimal”

You want me to take the time average of policies ) I can’t, because V (⇡) is not convex

Uslu-Doostnejad-Ribeiro-NaderiAlizadeh, Learning to Slice Wi-Fi Networks: A State-Augmented Primal-Dual Approach, 2024, arxiv:2102.11941
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Calvo Fullana-Paternain-Chamon-Ribeiro, State Augmented Constrained Reinforcement Learning, 2021, arxiv:2102.11941
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How do we Handle Constraint Specification in Unknown Environments?

Resilient Constrained Reinforcement Learning

Adapt requirements (constraint levels ci ) to equate the marginal costs and benefits of relaxations

Resilient Constrained Learning

I Specifying constraints in ML is hard because their e↵ect in learned functions depends on the data

) At the resilient equilibrium we relax constraints is proportion to their di�culty

uu?
a

dh(u)

du

�
d P(u)

du

In
fe

a
si
b
le

uu?
b

dh(u)

du

�
d P(u)

du

In
fe

a
si
b
le

uu?
c

dh(u)

du

�
d P(u)

du

In
fe

a
si
b
le

Hounie-Ribeiro-Chamon, Resilient Constrained Learning, TIT 2022, arxiv.org/abs/2306.02426
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Hounie-Ribeiro-Chamon, Resilient Constrained Learning, 2023, arxiv:2306.02426

Ding-Huan-Ribeiro, Resilient Constrained Reinforcement Learning, 2023, arxiv:2312.17194
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Strong Duality of Constrained Reinforcement Learning

21 - 28
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Strong Duality of Constrained Reinforcement Learning

Theorem (Paternain et al ’19)

Assume that there exist a strictly feasible policy π† such that V(π†) < c. Then, the constrained

reinforcement learning problem has zero duality gap ⇒ P = D

▶ There is some sort of hidden convexity in CRL problems ⇒ Occupancy measure reformulation

Paternain-Chamon-Calvo Fullana-Ribeiro, Constrained Reinforcement Learning has Zero Duality Gap, 2019, https://arxiv.org/abs/1910.13393
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Occupancy Measure Reformulation

▶ The occupancy measure of policy π is the accumulated probability of visiting each state action pair

ρπ(s, a) = (1− γ)
T−1∑
t=0

γtPπ

(
st = s, at = a

)
⇒ π(a|s) = ρπ(s, a)×

[∫
A
ρπ(s, a) da

]−1

▶ The value functions Vi (π) can be rewritten as expectations with respect to the occupancy measure

Vi (ρ) = E(s,a)∼ρ

[
ri (s, a)

]
=

∫
S×A

r(s, a) ρπ(s, a) da ds

▶ Thus, value functions Vi (ρ) are linear with respect to the occupancy measure variable
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A Non-Proof of Strong Duality

▶ CRL is a nonconvex program in policy variables but a linear program on occupancy measure variables

P =maximum
π

V0(π) := Es,a∼π

[ ∞∑
t=0

γt r0(st , at)

]
= Pρ =maximum

ρ
V0(ρ) := E(s,a)∼ρ

[
r0(st , at)

]

subject to V(π) := Es,a∼π

[ ∞∑
t=0

γt r (st , at)

]
≥ c subject to V(ρ) := E(s,a)∼ρ

[
r (st , at)

]
≥ c

▶ CRL formulated in terms of occupancy measure variables has no duality gap because it is an LP

Pρ = Dρ = minimum
λ

maximum
ρ

V0(ρ) + λT
(
V(ρ)− c

)
▶ Primal equivalence ̸= dual equivalency ⇒ CRL with policy variables may still have a duality gap
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A Proof Sketch of Strong Duality

V

V0

C
P

[1,λ∗]
D

▶ Epigraph of policy CRL need not be convex

C =
{[

V0(π); V(π)
]
for some π

}
▶ Epigraph of occupancy measure CRL is convex

Cρ =
{[

V0(ρ); V(ρ)
]
for some ρ

}
▶ These two sets are the same ⇒ Cρ ≡ C
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A Proof Sketch of Strong Duality

V

V0

C

Cρ

P = Pρ = Dρ

[1,λ∗]
D

▶ Epigraph of policy CRL need not be convex

C =
{[

V0(π); V(π)
]
for some π

}
▶ Epigraph of occupancy measure CRL is convex

Cρ =
{[

V0(ρ); V(ρ)
]
for some ρ

}
▶ These two sets are the same ⇒ Cρ ≡ C
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A Proof Sketch of Strong Duality

V

V0

Cρ ≡ C

D = P = Pρ = Dρ

▶ Epigraph of policy CRL need not be convex

C =
{[

V0(π); V(π)
]
for some π

}
▶ Epigraph of occupancy measure CRL is convex

Cρ =
{[

V0(ρ); V(ρ)
]
for some ρ

}
▶ These two sets are the same ⇒ Cρ ≡ C
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Policy and Occupancy Measure Epigraphs are Convex in Different Ways

▶ The epigraphs Cρ and C of occupancy measure and policy CRL are convex in different ways

V

V0

Cρ

Pρ=Dρ

ρ1

ρ2

V
[
αρ1 + (1 − α)ρ2

]
= αV (ρ1) + (1 − α)V (ρ2)

V

V0

C

P=D

π1

π2

There exist πα such that

V
[
πα

]
= αV (π1) + (1 − α)V (π2)

▶ The policy πα is not a convex combination of π1 and π2 (which will become a headache soon)
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Learning Parameterization

▶ Strong duality, D = P, despite having value functions V0(π) and V(π) that are not concave on π

P = D = minimum
λ≥0

maximum
π

Es,a∼π

[ ∞∑
t=0

γt

(
r0(st , at) + λT r(st , at)

)]
+ λTc

▶ In practice, policies are functions of learning parameterizations ⇒ Choose actions as a ∼ πθ

Dθ = minimum
λ≥0

maximum
πθ

Es,a∼πθ

[ ∞∑
t=0

γt

(
r0(st , at) + λT r(st , at)

)]
+ λTc

▶ Induces a duality gap because standard learning parameterizations are not convex
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Duality Gap in Parameterized Constrained Reinforcement Learning

▶ The learning parameterization is ν-universal ⇒ min
θ

max
s

∫
A

∣∣∣ π(a|s)− πθ(a|s)
∣∣∣ da ≤ ν for all π

Theorem (Paternain et al ’19)

The difference between the CRL parameterized dual Dθ and the CRL primal P is bounded by∣∣∣P − Dθ

∣∣∣ ≤ (
1 + ∥λ⋆∥1

) Bν

1− γ

▶ Duality gap depends on parameterization richness relative to discount factor and constraint difficulty

Paternain-Chamon-Calvo Fullana-Ribeiro, Constrained Reinforcement Learning has Zero Duality Gap, 2019, https://arxiv.org/abs/1910.13393
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Structural Properties of Constrained Reinforcement Learning Problems

▶ CRL problems are not convex when formulated in policy variables

Even though they are convex (linear) when formulated in occupancy measure variables

▶ Nevertheless, they have no duality gap ⇒ P = D. Because their epigraph sets are convex

▶ If we use ν-universal learning parameterizations CRL problems have O(ν) duality gaps
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Dual Gradient Descent (DGD)

28 - 35
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Dual Gradient Descent: Lagrangian Maximizers (Primal Iteration)

▶ Since the duality gap is O(ν) (small) we can solve CRL in the parameterized dual domain

Dθ = minimum
λ≥0

maximum
πθ

Es,a∼πθ

[ ∞∑
t=0

γt

(
r0(st , at) + λT r(st , at)

)]
+ λTc

▶ For given multiplier λ, we find the parameter θ†(λ) that maximizes the corresponding Lagrangian

θ†(λ) ∈ argmax
θ

Es,a∼πθ

[ ∞∑
t=0

γt

(
r0(st , at) + λT r(st , at)

)]
+ λTc ≡ argmax

θ
L(θ,λ)

▶ Lagrangian maximizers θ†(λ) are unconstrained RL solutions ⇒ rλ(st , at) = r0(st , at) + λT r(st , at)
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Dual Gradient Descent: Multiplier Update (Dual Iteration)

▶ Constraint slacks evaluated at Lagrangian maximizers yield dual function gradients ⇒ Update λ as

λ+ =

[
λ− η

(
Es,a∼π

θ†(λ)

[ ∞∑
t=0

γtr(st , at)

]
− c

)]
+

▶ A set of policy evaluations of unconstrained RL problems. One policy evaluation per constraint

▶ Since the dual function is convex (they always are), dual gradient descent approaches λ∗

▶ Convergence of dual variables still holds if we consider stochastic approximations (policy rollouts)
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Dual Gradient Descent: Multiplier Update (Dual Iteration)

▶ Constraint slacks evaluated at Lagrangian maximizers yield dual function gradients ⇒ Update λ as

λ+ =

[
λ− η

(
Es,a∼π

θ†(λ)

[ ∞∑
t=0

γtr(st , at)

]
− c

)]
+

▶ A set of policy evaluations of unconstrained RL problems. One policy evaluation per constraint

▶ Since the dual function is convex (they always are), dual gradient descent approaches λ∗

▶ Convergence of dual variables still holds if we consider stochastic approximations (policy rollouts)
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Ergodic Convergence of (Stochastic) Dual Gradient Descent

Theorem (Calvo Fullana et al’23)

The sequence of Lagrangian maximizing policies π(t) = π†(λ(t)) generated by (stochastic) dual

gradient descent are:

(i) Asymptotically feasible ⇒ lim
T→∞

1

T

T−1∑
t=0

V
(
π(t)

)
≥ c

(ii) Asymptotically near-optimal ⇒ lim
T→∞

E
[

1

T

T−1∑
t=0

V
(
π(t)

)]
≥ P⋆ − ηB2

2

(mild conditions apply)

Calvo Fullana-Paternain-Chamon-Ribeiro, State Augmented Constrained Reinforcement Learning, 2021, https://arxiv.org/abs/2102.11941
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Dual Gradient Descent Does not Converge to the Optimal Policy

A Tantalizing Conjecture (Time Immemorial)

The sequence of Lagrangian maximizing policies π(t) = π†(λ(t)) generated by (stochastic) dual

gradient descent converge to the optimal policy:

(i) Asymptotically feasible ⇒ lim
T→∞

V

[
1

T

T−1∑
t=0

π(t)

]
≥ c

(ii) Asymptotically near-optimal ⇒ lim
T→∞

V

[
E
[

1

T

T−1∑
t=0

π(t)

] ]
≥ P⋆ − ηB2

2

(mild conditions apply)

Calvo Fullana-Paternain-Chamon-Ribeiro, State Augmented Constrained Reinforcement Learning, 2021, https://arxiv.org/abs/2102.11941
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Dual Gradient Descent Does not Converge to the Optimal Policy

A False Statement Because Value Functions are not Convex

The sequence of Lagrangian maximizing policies π(t) = π†(λ(t)) generated by (stochastic) dual

gradient descent converge to the optimal policy:

(i) Asymptotically feasible ⇒ lim
T→∞

V

[
1

T

T−1∑
t=0

π(t)

]
≥ c

(ii) Asymptotically near-optimal ⇒ lim
T→∞

V

[
E
[

1

T

T−1∑
t=0

π(t)

] ]
≥ P⋆ − ηB2

2

(mild conditions apply)

Calvo Fullana-Paternain-Chamon-Ribeiro, State Augmented Constrained Reinforcement Learning, 2021, https://arxiv.org/abs/2102.11941
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The Epigraph of Constrained Reinforcement Learning

▶ The epigraph C is convex in a strange way ⇒ policy πα is not a convex combination of π and π′

▶ An average of value functions
1

T

T∑
t=1

V
[
π(t)

]
is not the value function average V

[
1

T

T∑
t=1

π(t)

]

V

V0

Cρ

Pρ=Dρ

ρ1

ρ2

V
[
αρ + (1 − α)ρ′

]
= αV (ρ) + (1 − α)V (ρ′)

V

V0

C

P=D

π1

π2

There exist πα such that V
[
πα

]
= αV (π) + (1−α)V (π′)
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Dual Gradient Descent, Good News and Bad News

▶ Dual gradient descent alternates between Lagrangian maximization and dual gradient descent steps

▶ Lagrangian maximization is a standard (unconstrained) reinforcement learning problem

This is good news. It means that we know how to solve this maximization

▶ Dual gradient descent does not, alas (poor Yorick), converge to the optimal policy

⇒ But it does converge in a sense ⇒ State Augmented Constrained Reinforcement Learning

Segarra-Eisen-Egan-Ribeiro, Attributing the Authorship of the Henry VI Plays by Word Adjacency, Shakespeare Quarterly 67(2) pp, 232-256, 2016
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State Augmented Constrained Reinforcement Learning

35 - 44
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Ergodic Constrained Reinforcement Learning

▶ Policy π that maximizes accumulation of reward r0 while accumulating at least ci units of reward ri

P = maximum
π

V0(π) := lim
T→∞

Es,a∼π

[
1

T

T∑
t=0

r0(st , at)

]

subject to Vi (π) := lim
T→∞

Es,a∼π

[
1

T

T∑
t=0

ri (st , at)

]
≥ ci

▶ Same formulation but without discounting and with ergodic averages (limits of time averages)
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Ergodic Constrained Reinforcement Learning

▶ Policy π that maximizes accumulation of reward r0 while accumulating at least c units of reward r

P = maximum
π

V0(π) := lim
T→∞

Es,a∼π

[
1

T

T∑
t=0

r0(st , at)

]

subject to V(π) := lim
T→∞

Es,a∼π

[
1

T

T∑
t=0

r (st , at)

]
≥ c

▶ Same formulation but without discounting and with ergodic averages (limits of time averages)
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Rollout Dual Gradient Descent

▶ Lagrangian ⇒ L(π,λ) = lim
T→∞

Es,a∼π

[
1

T

T∑
t=0

r0(st , at) + λT r(st , at)

]

▶ Unparameterized policy optimization ⇒ π†(λ) ∈ argmax
π

lim
T→∞

Es,a∼π

[
1

T

T∑
t=0

rλ(st , at)

]

▶ Rollout dual descent ⇒ λk+1 =

[
λk − η

T0

(k+1)T0−1∑
t=kT0

[
r
(
st , at ∼ π†(λk)

)
− c

] ]
+

Execute policy π†(λk) for T0 time steps. Accumulate reward violations on associated multipliers
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Ergodic Convergence of Rollout Dual Gradient Descent (DGD)

Theorem (Calvo Fullana et al’23)

Rollout dual gradient descent generates state-action sequences
{
(st , at ∼ π†(λk))

}
t≥0

that are:

(i) Almost surely feasible lim
T→∞

1

T

T−1∑
t=0

r
(
st , at ∼ π†(λk)

)
≥ c a.s.

(ii) Near-optimal lim
T→∞

E

[
1

T

T−1∑
t=0

r0
(
st , at ∼ π†(λk)

)]
≥ P⋆ − ηB2

2

(mild conditions apply)

Calvo Fullana-Paternain-Chamon-Ribeiro, State Augmented Constrained Reinforcement Learning, 2021, https://arxiv.org/abs/2102.11941
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What Convergence of Dual Gradient Descent Claims

Theorem (Calvo Fullana et al’23)

(i) Almost surely feasible lim
T→∞

1

T

T−1∑
t=0

r
(
st , at ∼ π†(λk)

)
≥ c a.s.

(ii) Near-optimal lim
T→∞

E

[
1

T

T−1∑
t=0

r0
(
st , at ∼ π†(λk)

)]
≥ P⋆ − ηB2

2

▶ The time average of the rewards of the sequence generated by rollout dual descent converges

This sequence is a “solution” of the CRL problem. Stronger, in fact. Constraints satisfied a.s.
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What Convergence of Dual Gradient Descent Does Not Claim

Theorem (Calvo Fullana et al’23)

(i) Almost surely feasible lim
T→∞

1

T

T−1∑
t=0

r
(
st , at ∼ π†(λk)

)
≥ c a.s.

(ii) Near-optimal lim
T→∞

E

[
1

T

T−1∑
t=0

r0
(
st , at ∼ π†(λk)

)]
≥ P⋆ − ηB2

2

▶ Alas (poor Yorick), we do not have a claim on the optimal policy ⇒ π†(λk) ̸ →π∗
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What Convergence of Dual Gradient Descent Does Not Claim

Theorem (Calvo Fullana et al’23)

(i) Almost surely feasible lim
T→∞

1

T

T−1∑
t=0

r
(
st , at ∼ π†(λk)

)
≥ c a.s.

(ii) Near-optimal lim
T→∞

E

[
1

T

T−1∑
t=0

r0
(
st , at ∼ π†(λk)

)]
≥ P⋆ − ηB2

2

▶ Alas (poor Yorick), we do not have a claim on the optimal policy ⇒ 1

K

K∑
k=1

π†(λk) ̸ →π∗
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What Convergence of Dual Gradient Descent Does Claim

Theorem (Calvo Fullana et al’23)

(i) Almost surely feasible lim
T→∞

1

T

T−1∑
t=0

r
(
st , at ∼ π†(λk)

)
≥ c a.s.

(ii) Near-optimal lim
T→∞

E

[
1

T

T−1∑
t=0

r0
(
st , at ∼ π†(λk)

)]
≥ P⋆ − ηB2

2

▶ The sequence
{
(st , at ∼ π†(λk))

}
t≥0

samples actions from the optimal policy (it solves CRL)

⇒ We just need a way to train a parameterization that generates the sequence at ∼ π†(λk)

A. Ribeiro Learning with Constraints 51



Learning to Maximize Lagrangians

Constrained reinforcement learning is solved by learning policies that maximize Lagrangians

π†(λk) ∈ argmax
π

lim
T→∞

Es,a∼π

[
1

T

T∑
t=0

rλk (st , at)

]
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State Augmented Constrained Reinforcement Learning

st

π∗(st ) at

p(st+1|st , at ) st+1

λk λk+1 = ... λk+1

π
∗ = argmax

π
lim

T→∞
Es,a∼π

[
1

T

T∑

t=0

r0(st , at )

]

subject to lim
T→∞

Es,a∼π

[
1

T

T∑

t=0

r (st , at )

]
≥ c

▶ For a Markov decision process (MDP) we want to choose actions that solve a CRL problem
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State Augmented Constrained Reinforcement Learning

st

π∗(st ) at

p(st+1|st , at ) st+1

λk λk+1 = ... λk+1

π
∗ = argmax

π
lim

T→∞
Es,a∼π

[
1

T

T∑

t=0

r0(st , at )

]

subject to lim
T→∞

Es,a∼π

[
1

T

T∑

t=0

r (st , at )

]
≥ c

▶ Requires finding optimal policy π∗ ⇒ I do not know how to find it operating in policy space
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State Augmented Constrained Reinforcement Learning

st

π†(st ,λk ) at

p(st+1|st , at ) st+1

λk λk+1 = ... λk+1

π
†(st ,λk ) ∈ argmax

π
lim

T→∞
Es,a∼π

[
1

T

T∑

t=0

rλk
(st , at )

]

▶ Find Lagrangian maximizing policies π†(λk) ⇒ Solve unconstrained RL with rewards rλk (st , at)
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State Augmented Constrained Reinforcement Learning

st

π†(st ,λk ) at

p(st+1|st , at ) st+1

λk λk+1 = ... λk+1

π
†(st ,λk ) ∈ argmax

π
lim

T→∞
Es,a∼π

[
1

T

T∑

t=0

rλk
(st , at )

]

▶ Needs dual variable λk as input. Also need to update λk to accumulate constraint violations
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State Augmented Constrained Reinforcement Learning

st

π†(st ,λk ) at

p(st+1|st , at ) st+1

λk λk+1 = ... λk+1

λk+1 =

[
λk −

η

T0

(k+1)T0−1∑

t=kT0

[
r(st , at ) − c

] ]

+

sk =
[
skT−0:(k+1)T0−1

]

ak =
[
akT−0:(k+1)T0−1

]

▶ Needs dual variable λk as input. Also need to update λk to accumulate constraint violations
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State Augmented Constrained Reinforcement Learning

st

π†(st ,λk ) at

p(st+1|st , at ) st+1

λk p(λk+1|λk , sk , ak ) λk+1

λk+1 =

[
λk −

η

T0

(k+1)T0−1∑

t=kT0

[
r(st , at ) − c

] ]

+

sk =
[
skT−0:(k+1)T0−1

]

ak =
[
akT−0:(k+1)T0−1

]

▶ This is equivalent to defining an augmented MDP with (augmented) state s̃t = (st ,λt)

And an augmented transition probability kernel that included the dual variable updates
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State Augmented Constrained Reinforcement Learning

st

π†(st ,λk ) at

p(st+1|st , at ) st+1

λk p(λk+1|λk , sk , ak ) λk+1

λk+1 =

[
λk −

η

T0

(k+1)T0−1∑

t=kT0

[
r(st , at ) − c

] ]

+

sk =
[
skT−0:(k+1)T0−1

]

ak =
[
akT−0:(k+1)T0−1

]

▶ This is equivalent to defining an augmented MDP with (augmented) state s̃t = (st ,λt)

And an augmented transition probability kernel that included the dual variable updates
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Learning Parameterization

▶ In practice, policies are functions of learning parameterizations ⇒ Choose actions as a ∼ πϕ(s,λ)

π∗
ϕ ∈ argmax

πϕ

lim
T→∞

EλEs,a∼πϕ

[
1

T

T∑
t=0

rλt (st , at)

]
≡ argmax

πϕ

lim
T→∞

EλEs,a∼πϕ

[
1

T

T∑
t=0

r(st , λt , at)

]

▶ Since this is an state augmented MDP we also need to take expectation over a λ distribution

Choosing this distribution presents the usual challenges of off-policy RL
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Parameterized State Augmented Constrained Reinforcement Learning

▶ Learn parameterized policy π∗
ϕ that maximizes the Lagrangian averaged over the dual distribution

Execute policy π∗
ϕ while keeping track of dual variable updates ⇒ Generate optimal trajectory

st

π∗
ϕ(st ,λk ) at

p(st+1|st , at ) st+1

λk p(λk+1|λk , sk , ak ) λk+1

π
∗
ϕ(st ,λk ) ∈ argmax

πϕ

lim
T→∞

EλEs,a∼πϕ

[
1

T

T∑

t=0

r(st , λt , at )

]

λk+1 =

[
λk −

η

T0

(k+1)T0−1∑

t=kT0

[
r(st , at ) − c

] ]

+

sk =
[
skT−0:(k+1)T0−1

]

ak =
[
akT−0:(k+1)T0−1

]

Calvo Fullana-Paternain-Chamon-Ribeiro, State Augmented Constrained Reinforcement Learning, 2021, https://arxiv.org/abs/2102.11941
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Time Average Convergence is Through Policy Switching (Wireless Network)

▶ Constraint slacks oscillate around zero ⇒ They spend enough time below zero (feasibility claim)
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▶ The slack oscillation is driven by multiplier oscillation which in turn drives policy switching

The multipliers drive the policies π(λk) to switch at the right rate

Uslu-Doostnejad-Ribeiro-NaderiAlizadeh, Learning to Slice Wi-Fi Networks: A State-Augmented Primal-Dual Approach, 2024, arxiv:2102.11941
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Irrecoverability of the Optimal Policy (Wireless Network)

▶ DGD learns to allocate different users at different points in time with the right amount of power
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▶ At any given epoch the policies π†(λk) are not optimal ⇒ Their combined action is “optimal”

You want me to take the time average of policies ⇒ I can’t, because V (π) is not convex

Uslu-Doostnejad-Ribeiro-NaderiAlizadeh, Learning to Slice Wi-Fi Networks: A State-Augmented Primal-Dual Approach, 2024, arxiv:2405.05748
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State Augmented Constrained RL

▶ To learn solutions of constrained reinforcement learning problems we learn to maximize Lagrangians

Maximizing Lagrangians is equivalent to solving unconstrained MDPs with modified rewards

Equivalent to augmenting the MDP’s state with dual variables which we update online

▶ This is not settling for a lesser goal ⇒ We are still solving the original CRL problem

Which we otherwise don’t how how to solve except with regularizations that induce suboptimality

Ding-Wei-Zhang-Ribeiro, Last-Iterate Convergent Policy Gradient Primal-Dual Methods for Constrained MDPs, 2023, arxiv:2306.11700
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Resilient Constrained (Reinforcement) Learning

▶ Ecological resilience is the ability of an ecosystem to adapt function to withstand varying conditions

▶ Learning resilience is the ability to adapt specifications to accommodate varying data properties

44 - 49
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Specifying Requirements in Reinforcement Learning is Hard

▶ Specifications in learning are difficult ⇒ Feasible specifications depend on unknown distributions

⇒ Requirement specifications (ci ) can be relaxed during system design. They are variables

Perturbation function

With constraint relaxation u, the perturbation function P(u) is the solution of the relaxed problem

P(u) = maximum
π

V0(π) := Es,a∼π

[ ∞∑
t=0

γt r0(st , at)

]

subject to V(π) := Es,a∼π

[ ∞∑
t=0

γt r (st , at)

]
≥ c+ u

▶ Larger relaxations decrease objective loss (a benefit) but increase specification violation (a cost).
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Resilient Constrained Learning: Adapting Requirements

▶ To balance costs and benefits of relaxation we relax constraints in proportion to their difficulty

Resilient Equilibrium

For strictly convex function h(u) we say that relaxation u∗ achieves the resilient equilibrium if

∇h(u⋆) ∈ − ∂P(u⋆).

▶ At the resilient equilibrium the marginal cost of relaxation equals the marginal benefit of relaxation

Hounie-Ribeiro-Chamon, Resilient Constrained Learning, 2023, arxiv:2306.02426

Ding-Huan-Ribeiro, Resilient Constrained Reinforcement Learning, 2023, arxiv:2312.17194
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Resilient Constrained Learning: Adapting Requirements

Resilient Equilibrium

For strictly convex function h(u) we say that relaxation u∗ achieves the resilient equilibrium if

∇h(u⋆) ∈ − ∂P(u⋆).
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Hounie-Ribeiro-Chamon, Resilient Constrained Learning, 2023, arxiv:2306.02426

Ding-Huan-Ribeiro, Resilient Constrained Reinforcement Learning, 2023, arxiv:2312.17194
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Resilient Equilibria and Dual Variables

▶ Subdifferentials of perturbation functions are the opposite of corresponding optimal multipliers

Resilient Equilibrium

For strictly convex function h(u) we say that relaxation u∗ achieves the resilient equilibrium if

∇h(u⋆) ∈ λ∗(u∗) = − ∂P(u⋆).

▶ Resilient constrained learning problems have smaller sample complexity. They generalize better.

⇒ The optimal multiplier λ∗(u∗) is smaller than the optimal multiplier λ∗(0)

Hounie-Ribeiro-Chamon, Resilient Constrained Learning, 2023, arxiv:2306.02426
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Algorithmic Reformulation of Resilient Constrained Learning

Resilient Constrained Learning Program

A relaxation u⋆ satisfies the resilient equilibrium if and only if it is a solution of the program

P(u∗) = maximum
π

V0(π) := Es,a∼π

[ ∞∑
t=0

γtr0(st , at)

]
+ h(u)

subject to V(π) := Es,a∼π

[ ∞∑
t=0

γtr (st , at)

]
≥ c+ u

▶ The resilient equilibrium exist and is unique because we have assumed that h(u) is strictly convex

▶ Learning resilient solutions is equivalent to a regularized constrained learning problem

Hounie-Ribeiro-Chamon, Resilient Constrained Learning, 2023, arxiv:2306.02426
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Heterogeneous (Class Imbalanced) Federated Learning

▶ Learn a common model with heterogeneous data

distributed among C clients

▶ Client i loss ⇒ Ri (fθ) = E
[
ℓ
(
fθ(x), y

)]
▶ Average loss ⇒ R̄(fθ) =

1

C

C∑
i=1

Ri (fθ)

▶ We seek a model that is best across all clients but is also good (not bad) for each individual client

P⋆ = min
fθ

R̄(fθ)

subject to Ri (fθ)− R̄(fθ) ≤ ϵ

▶ Minority Samples have few samples in the whole dataset but are significant in some clients

Hounie-Ribeiro-Chamon, Resilient Constrained Learning, 2023, arxiv:2306.02426
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Heterogeneous (Class Imbalanced) Federated Learning

▶ Learn a common model with heterogeneous data

distributed among C clients

▶ Client i loss ⇒ Ri (fθ) = E
[
ℓ
(
fθ(x), y

)]
▶ Average loss ⇒ R̄(fθ) =

1

C

C∑
i=1

Ri (fθ)

▶ We seek a model that is best across all clients but is also good (not bad) for each individual client

P⋆ = min
fθ

R̄(fθ)

subject to Ri (fθ)− R̄(fθ) ≤ ϵ

▶ Minority Samples have few samples in the whole dataset but are significant in some clients

Hounie-Ribeiro-Chamon, Resilient Constrained Learning, 2023, arxiv:2306.02426
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Constraints that are More Difficult Experience Larger Relaxations

Resilient relaxation u∗ as a function of the
percent of entries drawn from the minority class
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Hounie-Ribeiro-Chamon, Resilient Constrained Learning, TIT 2022, arxiv:2306.02426
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Resilient Learning Problems are Easier to Solve and Generalize Better

Standard and resilient multipliers of different
clients as a function of reference constraint level
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Hounie-Ribeiro-Chamon, Resilient Constrained Learning, 2023, arxiv:2306.02426
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Concluding Remarks

Learning Under Requirements

49 - 51
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Artificial Intelligence and Systems Engineering

▶ Learning can transform systems engineering practice by automating the engineering design cycle

Operational
settingsModel

Requirements

Data
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Learning Under Requirements

▶ But it can do so only if we incorporate requirements in the practice of machine learning

Operational
settingsModel

Requirements

Data

Learning
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Constrained Supervised Learning (CL)

▶ In constrained learning, losses appear as objectives as well as statistical and pointwise constraints

P = ℓ0
(
Φ∗

θ

)
= minimum

Φθ

ℓ0
(
Φθ

)
= E

[
ℓ0
(
Φθ(x), y

) ]
Minimize objective loss

subject to ℓi
(
Φθ

)
= E

[
ℓi
(
Φθ(x), y

) ]
≤ ci Statistical loss requirements

ℓ′i
(
Φθ(x), y

)
≤ ci a.e. Pointwise loss requirements

▶ Find the parametric function Φ∗
θ that minimizes the statistical objective loss ℓ0 while incurring ...

... at most ci units of statistical constraint loss ℓi as well as ...

... at most ci units of constraint loss ℓ
′
i almost everywhere over the data distribution
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Constrained Reinforcement Learning (CRL)

▶ In constrained reinforcement learning, rewards appear as objectives and constraints

P = V0(π
∗) = maximum

π
V0(π) := Es,a∼π

[ ∞∑
t=0

γt r0(st , at)

]
Maximize objective reward

subject to Vi (π) := Es,a∼π

[ ∞∑
t=0

γt ri (st , at)

]
≥ ci Subject to reward requirements

▶ Find the Policy π∗ that maximizes the accumulation of objective reward r0 while accumulating ...

... at least ci units of constraint reward ri
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Concluding Remarks

Requirements can be Transformative in Practice

51 - 53
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Constrained Alignment of Large Language Models (LLMs)

▶ Align a pretrained LLM to enhance helpfulness and safety of text generated in response to prompts
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▶ Pareto front of optimality vs helpfulness moves right and up relative to state of the art heuristics
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Constrained Alignment of Generative Diffusion Models

▶ Constrained composition sampling stays close to pre-trained while balancing different rewards

▶ Unconstrained composition deviates too much from pretrained model and overfits to some rewards
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Resource Allocation in Wireless Communication Networks with Diffusion Processes

▶ Optimal resource allocation policy is stochastic ⇒ Learn to sample from optimal distributions
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▶ Less constraints are violated and violated constraints are violated by smaller amounts
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Optimal Power Flow

▶ Train a learning parameterization that optimizes cost objective while satisfying ....

... the conservation of power flow and operational constraints on buses and branches

C Project Description: Generative AI Agents for Resilient Wireless Comm. Systems
In ecology, resilience encompasses three properties of nature: Robustness, resistance, and latitude [1, 2].
Robustness is the ability of an ecosystem to tolerate disturbances without changing behavior. Resistance
is the ability to adapt behavior to maintain function. Latitude is the ability to adapt function to maintain
survivability. We adopt this triad here as a novel definition of resilience in wireless resource management.
We say that a resource allocation policy has high robustness if its allocations can maintain Quality of
Service (QoS) over a range of system states [cf. (1)]. We say that it has high resistance if it can maintain
QoS by adapting resource allocations to varying states [cf. (SPP)]. We say that it has high latitude if it
can adapt QoS requirements to avoid catastrophic failure [cf. (2)]. Robustness, resistance, and latitude are
layers of protection. A resilient policy tolerates small disturbances (robustness), adapts allocations to tolerate
midrange disturbances (resistance), and changes requirements to survive large disturbances (latitude).

The goal of this project is to develop resilient generative AI agents to allocate resources with high robustness,
resistance, and latitude. To achieve this goal, we argue for novel AI paradigms centered on satisfying
requirements rather than on minimizing losses. In everywhere learning, we propose to train AI agents to
satisfy constraints with probability one over data distributions [cf. (SPP) and (1)]. This is in contrast to the
standard approach of minimizing average losses. In requirement learning, we propose to train AI agents to
identify and relax requirements that are di!cult to satisfy. This is codified in an equilibrium condition in
which requirements are relaxed in proportion to their e"ect on overall system performance [cf. (2)].
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Fig. 1: Everywhere (SPP) & Requirement (2) Learning. Constraint viola-
tions of everywhere learning agents are smaller than constraint violations
of supervised (orange) or constrained (green) agents. Requirement learn-
ing improves optimality in corner cases by relaxing constraints (blue).

Everywhere learning is formulated to
enable robustness and resistance, since
in both cases we aim to satisfy require-
ments over varying states – through tol-
erance in robustness and through adap-
tation in resistance – and requirement
learning is formulated to enable high lat-
itude. In a preliminary test (Fig. 1), we
train AI agents with everywhere learn-
ing (red), supervised learning [3–20] (or-
ange) and constrained learning [21–27]
(green) to satisfy 300 constraints. Each
point in Fig. 1 represents outcomes of
di"erent state realizations with relative optimality gaps plotted against relative constraint violations. We
see that everywhere learning tradeo"s small optimality losses for much smaller constraint violations, and
that supervised and constrained learning have unworkable violations for robust or resistant policies. A test
of requirement learning (§ C.3) shows that it trains policies that reduce suboptimality at the cost of larger
constraint relaxations (blue). This tradeo" is most pronounced in corner cases with di!cult requirements.

To realize everywhere and requirement learning, we propose several technical innovations. Highlights of
the proposed research include an approximate duality theory to substantiate everywhere learning in the
dual domain, along with algorithms to contend with the high dimensionality of the dual function (§ C.2). We
also investigate dual variables as identifiers of di!cult constraints and propose their use for human operator
feedback and active learning of corner cases (§ C.3). Throughout, generative AI agents for everywhere and
requirement learning are developed as samplers of optimal stochastic control policies of di"usion processes
(§ C.4). We will demonstrate resilient AI agents in physical systems through collaborations with industry
partners and open testbeds (§ C.5). To impact resilience of NextG networks, we will engage industry partners
to translate resilient generative AI and incorporate research results into our educational missions (§ C.8).

C.1 Intellectual Merit: Resilient AI with High Robustness, Resistance & Latitude
Resistance. Explaining robustness, resistance, and latitude is easiest if we introduce their mathematical
formulations. It is also easier if we begin with resistance instead of robustness. Consider then a wireless
communication system with a state variable H that encapsulates both channel and node states. Given the
system’s state, an AI agent allocates resources ω(H; A) as dictated by a parametric function class. Resource

▶ Training with pointwise constraints (red and blue) is the only method with workable constraints
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Concluding Remarks

Requirements in AI Raise Interesting Fundamental Questions

53 - 55
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Strong Duality of Constrained Reinforcement Learning in Policy Space

Strong Duality of Constrained Reinforcement Learning in Policy Space

If a strictly feasible policy exists, P = D even though value functions Vi (π) are not concave on π

Policy and Occupancy Measure Epigraphs are Convex in Di↵erent Ways

I The epigraphs C⇢ and C of occupancy measure and policy CRL are convex in di↵erent ways
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I The policy ⇡↵ is not a convex combination of ⇡ and ⇡0 challenges convergence of dual methods

Alejandro Ribeiro Constrained Reinforcement Learning 25

Paternain-Chamon-Calvo Fullana-Ribeiro, Constrained Reinforcement Learning has Zero Duality Gap, 2019, arxiv:1910.13393
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State Augmented Constrained Reinforcement Learning

State Augmented Constrained Reinforcement Learning

To solve CRL we augment the state with Lagrange multipliers and learn to maximize LagrangiansState Augmented Constrained Reinforcement Learning
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I This is equivalent to defining an augmented MDP with (augmented) state s̃t = (st ,�t)

And an augmented transition probability kernel that included the dual variable updates

Alejandro Ribeiro Constrained Reinforcement Learning 47

Irrecoverability of the Optimal Policy (Wireless Network)

I DGD learns to allocate di↵erent users at di↵erent points in time with the right amount of power

I At any given epoch the policies ⇡†(�k) are not optimal ) Their combined action is “optimal”

You want me to take the time average of policies ) I can’t, because V (⇡) is not convex

Uslu-Doostnejad-Ribeiro-NaderiAlizadeh, Learning to Slice Wi-Fi Networks: A State-Augmented Primal-Dual Approach, 2024, arxiv:2102.11941

Alejandro Ribeiro Constrained Reinforcement Learning 44

Calvo Fullana-Paternain-Chamon-Ribeiro, State Augmented Constrained Reinforcement Learning, 2021, arxiv:2102.11941
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Resilient Constrained Reinforcement Learning

Resilient Constrained Reinforcement Learning

Adapt requirements (constraint levels ci ) to equate the marginal costs and benefits of relaxations

Resilient Constrained Learning

I Specifying constraints in ML is hard because their e↵ect in learned functions depends on the data

) At the resilient equilibrium we relax constraints is proportion to their di�culty

uu?
a

dh(u)

du

�
d P(u)

du

In
fe

a
si
b
le

uu?
b

dh(u)

du

�
d P(u)

du

In
fe

a
si
b
le

uu?
c

dh(u)

du

�
d P(u)

du

In
fe

a
si
b
le

Hounie-Ribeiro-Chamon, Resilient Constrained Learning, TIT 2022, arxiv.org/abs/2306.02426
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Hounie-Ribeiro-Chamon, Resilient Constrained Learning, 2023, arxiv:2306.02426

Ding-Huan-Ribeiro, Resilient Constrained Reinforcement Learning, 2023, arxiv:2312.17194
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Concluding Remarks

Systems Engineering and Artificial Intelligence

55 - 56
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Systems Engineering, Artificial Intelligence and Learning Under Requirements

Claim 1. Systems Engineering and Artificial Intelligence (AI) are closer disciplines than is often

recognized. We use more AI in systems engineering and more systems engineering in AI

Claim 2. Ignoring requirements is poor systems engineering practice. ⇒ We can solve limita-

tions of AI and we can expand its reach if we incorporate requirements in AI

Claim 3. Constrained (reinfocement) learning problems are interesting mathematical objects.

They are not convex but have small duality gaps
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